Gauss–Jacobi quadrature (original) (raw)
In numerical analysis, Gauss–Jacobi quadrature (named after Carl Friedrich Gauss and Carl Gustav Jacob Jacobi) is a method of numerical quadrature based on Gaussian quadrature. Gauss–Jacobi quadrature can be used to approximate integrals of the form Gauss–Jacobi quadrature uses ω(x) = (1 − x)α (1 + x)β as the weight function. The corresponding sequence of orthogonal polynomials consist of Jacobi polynomials. Thus, the Gauss–Jacobi quadrature rule on n points has the form where x1, …, xn are the roots of the Jacobi polynomial of degree n. The weights λ1, …, λn are given by the formula where .
Property | Value |
---|---|
dbo:abstract | In numerical analysis, Gauss–Jacobi quadrature (named after Carl Friedrich Gauss and Carl Gustav Jacob Jacobi) is a method of numerical quadrature based on Gaussian quadrature. Gauss–Jacobi quadrature can be used to approximate integrals of the form where ƒ is a smooth function on [−1, 1] and α, β > −1. The interval [−1, 1] can be replaced by any other interval by a linear transformation. Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with α = β = 0. Similarly, the Chebyshev–Gauss quadrature of the first (second) kind arises when one takes α = β = −0.5 (+0.5). More generally, the special case α = β turns Jacobi polynomials into Gegenbauer polynomials, in which case the technique is sometimes called Gauss–Gegenbauer quadrature. Gauss–Jacobi quadrature uses ω(x) = (1 − x)α (1 + x)β as the weight function. The corresponding sequence of orthogonal polynomials consist of Jacobi polynomials. Thus, the Gauss–Jacobi quadrature rule on n points has the form where x1, …, xn are the roots of the Jacobi polynomial of degree n. The weights λ1, …, λn are given by the formula where Γ denotes the Gamma function and P(α, β)n(x) the Jacobi polynomial of degree n. The error term (difference between approximate and accurate value) is: where . (en) |
dbo:wikiPageExternalLink | http://people.sc.fsu.edu/~jburkardt/cpp_src/gegenbauer_rule/gegenbauer_rule.html http://people.sc.fsu.edu/~jburkardt/m_src/jacobi_rule/jacobi_rule.html |
dbo:wikiPageID | 18583450 (xsd:integer) |
dbo:wikiPageLength | 3273 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 932010286 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Carl_Friedrich_Gauss dbr:Carl_Gustav_Jacob_Jacobi dbr:Gegenbauer_polynomials dbr:Gamma_function dbr:Gaussian_quadrature dbr:Gauss–Legendre_quadrature dbc:Numerical_integration_(quadrature) dbr:Numerical_analysis dbr:Chebyshev–Gauss_quadrature dbr:Jacobi_polynomials dbr:Dover_Publications dbr:Free_software dbr:Orthogonal_polynomials dbr:Numerical_quadrature |
dbp:wikiPageUsesTemplate | dbt:= dbt:Citation dbt:Math dbt:Su |
dcterms:subject | dbc:Numerical_integration_(quadrature) |
rdfs:comment | In numerical analysis, Gauss–Jacobi quadrature (named after Carl Friedrich Gauss and Carl Gustav Jacob Jacobi) is a method of numerical quadrature based on Gaussian quadrature. Gauss–Jacobi quadrature can be used to approximate integrals of the form Gauss–Jacobi quadrature uses ω(x) = (1 − x)α (1 + x)β as the weight function. The corresponding sequence of orthogonal polynomials consist of Jacobi polynomials. Thus, the Gauss–Jacobi quadrature rule on n points has the form where x1, …, xn are the roots of the Jacobi polynomial of degree n. The weights λ1, …, λn are given by the formula where . (en) |
rdfs:label | Gauss–Jacobi quadrature (en) |
owl:sameAs | freebase:Gauss–Jacobi quadrature wikidata:Gauss–Jacobi quadrature https://global.dbpedia.org/id/4kyg5 |
prov:wasDerivedFrom | wikipedia-en:Gauss–Jacobi_quadrature?oldid=932010286&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Gauss–Jacobi_quadrature |
is dbo:wikiPageRedirects of | dbr:Gauss-Gegenbauer_quadrature dbr:Gauss-Jacobi_quadrature dbr:Gauss-Jacobi_Mechanical_Quadrature dbr:Gauss-Jacobi_mechanical_quadrature dbr:Gauss–Gegenbauer_quadrature dbr:Gauss–Jacobi_mechanical_quadrature |
is dbo:wikiPageWikiLink of | dbr:List_of_numerical_analysis_topics dbr:Gauss-Gegenbauer_quadrature dbr:Gaussian_quadrature dbr:Gauss-Jacobi_quadrature dbr:List_of_things_named_after_Carl_Friedrich_Gauss dbr:List_of_things_named_after_Carl_Gustav_Jacob_Jacobi dbr:Gauss-Jacobi_Mechanical_Quadrature dbr:Gauss-Jacobi_mechanical_quadrature dbr:Gauss–Gegenbauer_quadrature dbr:Gauss–Jacobi_mechanical_quadrature |
is foaf:primaryTopic of | wikipedia-en:Gauss–Jacobi_quadrature |