Green's identities (original) (raw)
A matemàtiques, les Identitats de Green són un conjunt de desigualtats en càlcul vectorial. Anomenades així en honor del matemàtic George Green, el mateix que va descobrir el Teorema de Green.
Property | Value |
---|---|
dbo:abstract | A matemàtiques, les Identitats de Green són un conjunt de desigualtats en càlcul vectorial. Anomenades així en honor del matemàtic George Green, el mateix que va descobrir el Teorema de Green. (ca) Greenovy identity jsou souborem tří identit ve vektorové analýze. Jsou pojmenovány po matematikovi Georgovi Greenovi, který objevil tzv. Greenovu větu. (cs) In der Mathematik, speziell der Vektoranalysis, sind die beiden greenschen Formeln (manchmal auch greensche Identitäten, greensche Sätze oder Theoreme) spezielle Anwendungen des gaußschen Integralsatzes. Sie sind benannt nach dem Mathematiker George Green. Anwendung finden sie unter anderem in der Elektrostatik bei der Berechnung von Potentialen. Die Formeln sind nicht zu verwechseln mit dem Satz von Green, bei dem es um ebene Integrale geht. Im Folgenden sei kompakt mit abschnittweise glattem Rand und und seien zwei Funktionen auf , wobei einfach und zweifach stetig differenzierbar sei. ist der Nabla-Operator. (de) In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green, who discovered Green's theorem. (en) En matemáticas, las identidades de Green son un conjunto de igualdades en cálculo vectorial. Nombradas así en honor del matemático George Green, el mismo que descubrió el teorema de Green. (es) En analyse les identités de Green sont trois identités du calcul vectoriel reliant une intégrale définie dans un volume et celle définie sur le bord de ce volume. Ces relations sont dues à George Green. (fr) 数学においてグリーンの恒等式(グリーンのこうとうしき、英: Green's identities)とは、ベクトル解析に現れる三つの恒等式のことを言う。グリーンの定理を発見した数学者のジョージ・グリーンの名にちなむ。 (ja) Le identità di Green, il cui nome è dovuto a George Green, sono due corollari del teorema della divergenza per funzioni continue e differenziabili al second'ordine. (it) As identidades de Green formam um conjunto de três igualdades vetoriais envolvendo integrais. (pt) 格林恆等式(Green's identities)乃是向量分析的一組共三條恆等式,以發現格林定理的英國數學家喬治·格林命名。 (zh) |
dbo:wikiPageExternalLink | http://luz.izt.uam.mx/wiki/index.php/Green%27s_vector_identity http://mathworld.wolfram.com/GreensIdentities.html |
dbo:wikiPageID | 805700 (xsd:integer) |
dbo:wikiPageLength | 17906 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1094858502 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Product_rule dbr:Mathematics dbr:Neumann_boundary_condition dbr:Fundamental_solution dbr:George_Green_(mathematician) dbr:Green's_function dbr:Green's_theorem dbr:Lagrange's_identity_(boundary_value_problem) dbr:Wave_equation dbr:Curl_(mathematics) dbr:Directional_derivative dbr:Dirichlet_boundary_condition dbr:Harmonic_function dbr:Helmholtz_equation dbc:Mathematical_identities dbc:Vector_calculus dbr:Laplace_operator dbr:Divergence_theorem dbr:Continuously_differentiable dbr:Integration_by_parts dbr:Self-adjoint_operator dbr:Kirchhoff's_diffraction_formula dbr:Kirchhoff_integral_theorem dbr:Vector_calculus dbr:Laplace_equation dbr:Huygens_principle |
dbp:id | p/g045080 (en) |
dbp:title | Green formulas (en) |
dbp:wikiPageUsesTemplate | dbt:Springer dbt:Math dbt:Mvar dbt:Reflist dbt:Short_description dbt:Calculus |
dct:subject | dbc:Mathematical_identities dbc:Vector_calculus |
gold:hypernym | dbr:Set |
rdf:type | yago:WikicatMathematicalIdentities yago:WikicatTheorems yago:Abstraction100002137 yago:Attribute100024264 yago:Communication100033020 yago:Identity104618070 yago:Message106598915 yago:Personality104617562 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment | A matemàtiques, les Identitats de Green són un conjunt de desigualtats en càlcul vectorial. Anomenades així en honor del matemàtic George Green, el mateix que va descobrir el Teorema de Green. (ca) Greenovy identity jsou souborem tří identit ve vektorové analýze. Jsou pojmenovány po matematikovi Georgovi Greenovi, který objevil tzv. Greenovu větu. (cs) In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green, who discovered Green's theorem. (en) En matemáticas, las identidades de Green son un conjunto de igualdades en cálculo vectorial. Nombradas así en honor del matemático George Green, el mismo que descubrió el teorema de Green. (es) En analyse les identités de Green sont trois identités du calcul vectoriel reliant une intégrale définie dans un volume et celle définie sur le bord de ce volume. Ces relations sont dues à George Green. (fr) 数学においてグリーンの恒等式(グリーンのこうとうしき、英: Green's identities)とは、ベクトル解析に現れる三つの恒等式のことを言う。グリーンの定理を発見した数学者のジョージ・グリーンの名にちなむ。 (ja) Le identità di Green, il cui nome è dovuto a George Green, sono due corollari del teorema della divergenza per funzioni continue e differenziabili al second'ordine. (it) As identidades de Green formam um conjunto de três igualdades vetoriais envolvendo integrais. (pt) 格林恆等式(Green's identities)乃是向量分析的一組共三條恆等式,以發現格林定理的英國數學家喬治·格林命名。 (zh) In der Mathematik, speziell der Vektoranalysis, sind die beiden greenschen Formeln (manchmal auch greensche Identitäten, greensche Sätze oder Theoreme) spezielle Anwendungen des gaußschen Integralsatzes. Sie sind benannt nach dem Mathematiker George Green. Anwendung finden sie unter anderem in der Elektrostatik bei der Berechnung von Potentialen. Die Formeln sind nicht zu verwechseln mit dem Satz von Green, bei dem es um ebene Integrale geht. (de) |
rdfs:label | Identitats de Green (ca) Greenovy identity (cs) Greensche Formeln (de) Green's identities (en) Identidades de Green (es) Identités de Green (fr) Identità di Green (it) グリーンの恒等式 (ja) Identidades de Green (pt) 格林恆等式 (zh) |
owl:sameAs | freebase:Green's identities yago-res:Green's identities wikidata:Green's identities dbpedia-bg:Green's identities dbpedia-ca:Green's identities dbpedia-cs:Green's identities dbpedia-de:Green's identities dbpedia-es:Green's identities dbpedia-fa:Green's identities dbpedia-fr:Green's identities dbpedia-it:Green's identities dbpedia-ja:Green's identities dbpedia-pt:Green's identities dbpedia-sk:Green's identities dbpedia-zh:Green's identities https://global.dbpedia.org/id/Xyo6 |
prov:wasDerivedFrom | wikipedia-en:Green's_identities?oldid=1094858502&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Green's_identities |
is dbo:knownFor of | dbr:George_Green_(mathematician) |
is dbo:wikiPageRedirects of | dbr:Green's_Identities dbr:Green's_first_identity dbr:Green's_formulas dbr:Green's_identity dbr:Green's_second_identity dbr:Green_first_identity dbr:Green_identities dbr:Greens_identity dbr:Green’s_identities dbr:First_Green_identity dbr:Second_Green_identity dbr:Third_Green_identity |
is dbo:wikiPageWikiLink of | dbr:Carlo_Somigliana dbr:Huygens–Fresnel_principle dbr:Curvature_of_Space_and_Time,_with_an_Introduction_to_Geometric_Analysis dbr:Vector_calculus_identities dbr:List_of_multivariable_calculus_topics dbr:Weak_formulation dbr:Quantitative_models_of_the_action_potential dbr:George_Green_(mathematician) dbr:Giovanni_Battista_Rizza dbr:Green's_function dbr:Laplacian_of_the_indicator dbr:Neumann–Poincaré_operator dbr:Dirichlet's_principle dbr:Laplace's_equation dbr:Divergence_theorem dbr:Maria_Adelaide_Sneider dbr:Spectral_theory_of_ordinary_differential_equations dbr:Green's_Identities dbr:Green_formula dbr:Green's_first_identity dbr:Green's_formulas dbr:Green's_identity dbr:Green's_second_identity dbr:Green_first_identity dbr:Green_identities dbr:Greens_identity dbr:Green’s_identities dbr:Integration_by_parts dbr:Kirchhoff's_diffraction_formula dbr:Kirchhoff_integral_theorem dbr:Victorian_era dbr:Luke's_variational_principle dbr:Finite_element_method dbr:First_Green_identity dbr:Second_Green_identity dbr:Third_Green_identity |
is foaf:primaryTopic of | wikipedia-en:Green's_identities |