Self-adjoint operator (original) (raw)

About DBpedia

في الرياضيات، مؤثر المساعد الذاتي (بالإنجليزية: Self-adjoint operator)‏ على فضاء متجهي عقدي لا نهائي الأبعاد V مع الجداء الداخلي (بالتساوي، مؤثر هيرميتي (بالإنجليزية: Hermitian operator)‏ في حالة ذات أبعاد محدودة) هو تحويل خطي A (من V إلى نفسه) وهو النقطة المرافقة له.

Property Value
dbo:abstract في الرياضيات، مؤثر المساعد الذاتي (بالإنجليزية: Self-adjoint operator)‏ على فضاء متجهي عقدي لا نهائي الأبعاد V مع الجداء الداخلي (بالتساوي، مؤثر هيرميتي (بالإنجليزية: Hermitian operator)‏ في حالة ذات أبعاد محدودة) هو تحويل خطي A (من V إلى نفسه) وهو النقطة المرافقة له. (ar) Samoadjungovaný operátor je lineární operátor se zvláštními vlastnostmi. Operátory a především samoadjungované operátory studuje funkcionální analýza. Samoadjungovaný operátor je zobecněním samoadjungované matice. (cs) Στα μαθηματικά, ένας αυτoσυζυγής τελεστής σε ένα μιγαδικό διανυσματικό χώρο V με εσωτερικό γινόμενο είναι ένας τελεστής ( μία γραμμική απεικόνιση A από τον V στον εαυτό του) που είναι ο ίδιος ο συζυγής του: . Αν V είναι πεπερασμένης διάστασης με μία δοσμένη βάση,αυτό είναι ισοδύναμο με την συνθήκη ότι ο πίνακας A είναι , δηλαδή, ίσος με το συζυγή ανάστροφό του πίνακα, τον A*. Από το πεπερασμένης διάστασης, ο V έχει τέτοια ώστε ο πίνακας A σε σχέση με τη βάση αυτή να είναι ένας διαγώνιος πίνακας με στοιχεία πραγματικούς αριθμούς. Σ'αυτό το άρθρο, οι γενικεύσεις αυτής της έννοιας αντιστοιχούν σε τελεστές για χώρους Hilbert αυθαίρετης διάστασης. Οι αυτοσυζυγείς τελεστές χρησιμοποιούνται στη συναρτησιακή ανάλυση και στην κβαντική μηχανική. Η σημασία τους στην κβαντική μηχανική επεκτείνεται στον τύπο του Dirac–von Neumann της κβαντικής μηχανικής, στον οποίο φυσικές παρατηρήσιμες μεταβλητές όπως η θέση, η ορμή,η στροφορμή και η περιστροφή αντιπροσωπεύονται από τους αυτο-συζυγείς τελεστές στο χώρο Hilbert. Ιδιαίτερης σημασίας είναι η Χαμιλτονιανή η οποία ως παρατηρήσιμη μεταβλητή αντιστοιχεί στη συνολική ενέργεια του σωματιδίου μάζας m σ'ένα πραγματικό δυναμικό πεδίο V. Οι διαφορικοί τελεστές είναι μία σημαντική κατηγορία των . Η δομή των αυτοσυζυγών τελεστών σε απειροδιάστατους χώρους Hilbert μοιάζει ουσιαστικά με την περίπτωση των χώρων Hilbert πεπερασμένης διάστασης. Δηλαδή οι τελεστές είναι αυτοσυζυγείς αν και μόνο αν είναι μοναδικά ισοδύναμοι με πραγματικούς τελεστές πολλαπλασιασμού. Με τις κατάλληλες τροποποιήσεις το αποτέλεσμα αυτό μπορεί να επεκταθεί ενδεχομένως και στους μη φραγμένους τελεστές σε απειροδιάστατους χώρους. Δεδομένου ότι ένας ορισμένος παντού τελεστής είναι αναγκαστικά φραγμένος, χρειάζεται κανείς να είναι πιο προσεκτικός στον ορισμό του πεδίου ορισμού στη μη φραγμένη περίπτωση. Αυτό εξηγείται παρακάτω με περισσότερες λεπτομέρειες. (el) Ein selbstadjungierter Operator ist ein linearer Operator mit besonderen Eigenschaften. Operatoren und insbesondere selbstadjungierte Operatoren werden im mathematischen Teilgebiet der Funktionalanalysis untersucht. Der selbstadjungierte Operator ist eine Verallgemeinerung der selbstadjungierten Matrix. (de) In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map A (from V to itself) that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension. Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as position, momentum, angular momentum and spin are represented by self-adjoint operators on a Hilbert space. Of particular significance is the Hamiltonian operator defined by which as an observable corresponds to the total energy of a particle of mass m in a real potential field V. Differential operators are an important class of unbounded operators. The structure of self-adjoint operators on infinite-dimensional Hilbert spaces essentially resembles the finite-dimensional case. That is to say, operators are self-adjoint if and only if they are unitarily equivalent to real-valued multiplication operators. With suitable modifications, this result can be extended to possibly unbounded operators on infinite-dimensional spaces. Since an everywhere-defined self-adjoint operator is necessarily bounded, one needs be more attentive to the domain issue in the unbounded case. This is explained below in more detail. (en) エルミート作用素(エルミートさようそ、英: Hermitian operator, Hermitian)とは、複素ヒルベルト空間上の線形作用素で、自分自身と形式共役になるようなもののことである。 物理学の特に量子力学の文脈では作用素のことを「演算子」と呼ぶ。そのため、エルミート作用素はエルミート演算子と呼ばれる。 エルミート作用素という名称は、エルミート行列などの研究で知られるフランス人数学者シャルル・エルミートに因む。 (ja) En mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint ou opérateur hermitien est un endomorphisme d'espace de Hilbert qui est son propre adjoint (sur un espace de Hilbert réel on dit aussi endomorphisme symétrique). Le prototype d'espace de Hilbert est un espace euclidien, c'est-à-dire un espace vectoriel sur le corps des réels, de dimension finie, et muni d'un produit scalaire. L'analogue sur le corps des complexes s'appelle un espace hermitien. Sur ces espaces de Hilbert de dimension finie, un endomorphisme autoadjoint est diagonalisable dans une certaine base orthonormale et ses valeurs propres (même dans le cas complexe) sont réelles. Les applications des propriétés structurelles d'un endomorphisme autoadjoint (donc de sa forme quadratique associée) sont nombreuses. (fr) 작용소 이론에서 자기 수반 작용소(自己隨伴作用素, 영어: self-adjoint operator)는 스스로의 에르미트 수반이 자신과 같은 작용소이다. 유한 차원에서의 에르미트 행렬을 일반화한 개념이다. (ko) In matematica, in particolare in algebra lineare, un operatore autoaggiunto è un operatore lineare su uno spazio di Hilbert che è uguale al suo aggiunto. In letteratura si usa talvolta chiamare operatore simmetrico un operatore definito in un sottospazio di uno spazio vettoriale, il cui aggiunto non è in generale simmetrico, e operatore hermitiano un operatore densamente definito in tale spazio. Nel caso di uno spazio finito-dimensionale alcuni autori utilizzano inoltre il termine operatore simmetrico per denotare un operatore autoaggiunto nel caso reale. Per il teorema di Hellinger-Toeplitz un operatore simmetrico definito ovunque è anche limitato, e se il suo aggiunto è definito ovunque ed è limitato allora l'operatore è limitato. In particolare, se un operatore simmetrico limitato non è definito su tutto lo spazio allora può essere esteso in modo unico ad un operatore definito ovunque. La matrice che rappresenta un operatore autoaggiunto è una hermitiana, ed in dimensione finita il teorema spettrale asserisce che ogni operatore autoaggiunto di uno spazio vettoriale reale dotato di un prodotto scalare definito positivo ha una base ortonormale formata da autovettori. Equivalentemente, ogni matrice simmetrica reale è simile ad una matrice diagonale tramite una matrice ortogonale i cui coefficienti sono reali. Gli operatori autoaggiunti sono fondamentali in vari settori della matematica e della fisica, come ad esempio la geometria differenziale, l'analisi funzionale e la meccanica quantistica. (it) Um operador autoadjunto, hermitiano (português brasileiro) ou hermítico (português europeu) é um operador linear em um espaço vetorial com produto interno que é o adjunto de si mesmo. No caso de espaços de dimensão finita, a matriz que representa esse operador é igual à sua transposta conjugada. * Propriedades * Um operador é autoadjunto se e somente se * Todo autovalor de um operador autoadjunto é real: * Se e são autovalores diferentes associados a autovetores e . Então :Como e são distintos, temos , portanto . (pt) Operator samosprzężony (hermitowski) – odwzorowanie liniowe działające na skończenie wymiarowej, zespolonej przestrzeni wektorowej takie że gdzie: – iloczyn skalarny wektorów w przestrzeni – wektor powstały w wyniku działania operatora na wektor – sprzężenie hermitowskie wektora Operatory samosprzężone używane są w analizie funkcjonalnej. W mechanice kwantowej operatory samosprzężone reprezentują wielkości mierzone – nazywa się je obserwablami. Przydatność operatorów hermitowskich wynika stąd, że ich wartości własne są liczbami rzeczywistymi i z tej racji mogą określać wyniki pomiarów fizycznych. Operator samosprzężony skończenie wymiarowy można reprezentować za pomocą macierzy hermitowskiej (samosprzężonej). (pl) 在數學裏,作用於一個有限維的内积空間,一個自伴算子(self-adjoint operator)等於自己的伴隨算子;等價地說,在一组单位酉正交基下,表達自伴算子的矩陣是埃爾米特矩陣。埃爾米特矩陣等於自己的共軛轉置。根據有限維的譜定理,必定存在著一個正交歸一基,可以表達自伴算子為一個實值的對角矩陣。 (zh)
dbo:wikiPageExternalLink https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/ https://books.google.com/books%3Fid=UirEAgAAQBAJ&q=%22Self-adjoint+operator%22&pg=PP1 https://doi.org/10.1073/pnas.71.5.1952
dbo:wikiPageID 187408 (xsd:integer)
dbo:wikiPageLength 56918 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1122496633 (xsd:integer)
dbo:wikiPageWikiLink dbr:Quantum_mechanics dbr:Scalar_potential dbr:Schrödinger_equation dbr:Energy_(physics) dbr:Partial_isometry dbr:Rigged_Hilbert_space dbr:Theoretical_and_experimental_justification_for_the_Schrödinger_equation dbr:Borel_function dbc:Hilbert_space dbr:Unbounded_operator dbr:Unitary_operator dbr:Indiana_University_Mathematics_Journal dbr:Positive_operator_(Hilbert_space) dbc:Operator_theory dbr:Conjugate_transpose dbr:Mathematics dbr:Matrix_(mathematics) dbr:Elliptic_operator dbr:Essential_range dbr:Generalization dbr:Closable_operator dbr:Closed_graph_theorem dbr:Closed_operator dbr:Eigenvalue dbr:Momentum dbr:Concept dbr:Proceedings_of_the_National_Academy_of_Sciences dbr:Angular_momentum dbr:Bijective dbr:Stieltjes_integral dbr:Compact_operator_on_Hilbert_space dbr:Dense_set dbr:Friedrichs_extension dbr:Functional_analysis dbr:Hamiltonian_(quantum_mechanics) dbr:Hellinger–Toeplitz_theorem dbr:Orthonormal_basis dbr:Spectrum_(functional_analysis) dbr:Stone's_theorem_on_one-parameter_unitary_groups dbr:Measure_space dbr:Cayley_transform dbr:Time_evolution dbr:Domain_of_a_function dbr:Linear_map dbr:Ernst_Hellinger dbr:Euclidean_space dbr:Cauchy_sequence dbr:Diagonal_matrix dbr:Differential_operator dbr:Dirac–von_Neumann_axioms dbr:Direct_integral dbr:Formal_calculation dbr:Graph_of_a_function dbr:Dirac_notation dbr:Hans_Hahn_(mathematician) dbr:Hermitian_adjoint dbr:Hermitian_matrix dbr:Hilbert_space dbr:Isometry dbr:Laplacian dbr:Biorthogonal_system dbr:Unitary_transformation dbr:Differentiable_function dbr:Distribution_(mathematics) dbr:Borel_functional_calculus dbr:Polarization_identity dbr:Position_(vector) dbr:Spectral_theorem dbr:Spin_(physics) dbr:Feshbach–Fano_partitioning dbr:Constant_coefficient dbr:Inner_product dbr:Integration_by_parts dbr:Orthogonal_complement dbr:Canonical_form dbr:Real_number dbr:Monotone_convergence_theorem dbr:Skew-Hermitian_matrix dbr:Weak_operator_topology dbr:Cauchy-Schwarz_inequality dbr:Image_(mathematics) dbr:Observable dbr:Spectral_measure dbr:Characteristic_function dbr:Multiplication_operator dbr:Scattering_theory dbr:Non-Hermitian_quantum_mechanics dbr:Cauchy–Bunyakovsky–Schwarz_inequality dbr:Eigenstates dbr:Eigenvalues dbr:Formal_adjoint dbr:Conjugate-linear dbr:Adjoint_of_an_operator dbr:Adjoint_operator dbr:Complex_vector_space dbr:Multi-index
dbp:date September 2015 (en)
dbp:proof Let be self-adjoint. Self-adjoint operators are symmetric. The initial steps of this proof are carried out based on the symmetry alone. Self-adjointness of is not used directly until step 1b. Let Denote Using the notations from the section on symmetric operators , it suffices to prove that # Let The goal is to prove the existence and boundedness of the inverted resolvent operator and show that We begin by showing that and # The operator has now been proven to be bijective, so the set-theoretic inverse exists and is everywhere defined. The graph of is the set Since is closed , so is By closed graph theorem, is bounded, so (en) # By assumption, is symmetric; therefore For every Let . If then Since and are not in the spectrum, the operators are bijective. Moreover, # Indeed, If one had then would not be injective, i.e. one would have As discussed in the article about Adjoint operator, and, hence, This contradicts the bijectiveness. # The equality shows that i.e. is self-adjoint. Indeed, it suffices to prove that For every and (en)
dbp:reason Is this really true? We did not require the domain of A to be dense, yet S is densely defined. It appears that S has acquired a property that A did not possess. (en)
dbp:title Proof: self-adjoint operator has real spectrum (en) Proof: Symmetric operator with real spectrum is self-adjoint (en)
dbp:wikiPageUsesTemplate dbt:Authority_control dbt:Citation dbt:Cite_book dbt:Cite_journal dbt:Clarify dbt:Further dbt:Main dbt:Math dbt:Ordered_list dbt:Reflist dbt:See_also dbt:Sfn dbt:Short_description dbt:Sup dbt:Math_proof dbt:Functional_analysis dbt:Math_theorem dbt:Narici_Beckenstein_Topological_Vector_Spaces dbt:Schaefer_Wolff_Topological_Vector_Spaces dbt:Trèves_François_Topological_vector_spaces,_distributions_and_kernels dbt:Hilbert_space
dcterms:subject dbc:Hilbert_space dbc:Operator_theory
rdf:type owl:Thing yago:WikicatBilinearForms yago:Abstraction100002137 yago:Form106290637 yago:LanguageUnit106284225 yago:Part113809207 yago:Relation100031921 yago:Word106286395
rdfs:comment في الرياضيات، مؤثر المساعد الذاتي (بالإنجليزية: Self-adjoint operator)‏ على فضاء متجهي عقدي لا نهائي الأبعاد V مع الجداء الداخلي (بالتساوي، مؤثر هيرميتي (بالإنجليزية: Hermitian operator)‏ في حالة ذات أبعاد محدودة) هو تحويل خطي A (من V إلى نفسه) وهو النقطة المرافقة له. (ar) Samoadjungovaný operátor je lineární operátor se zvláštními vlastnostmi. Operátory a především samoadjungované operátory studuje funkcionální analýza. Samoadjungovaný operátor je zobecněním samoadjungované matice. (cs) Ein selbstadjungierter Operator ist ein linearer Operator mit besonderen Eigenschaften. Operatoren und insbesondere selbstadjungierte Operatoren werden im mathematischen Teilgebiet der Funktionalanalysis untersucht. Der selbstadjungierte Operator ist eine Verallgemeinerung der selbstadjungierten Matrix. (de) エルミート作用素(エルミートさようそ、英: Hermitian operator, Hermitian)とは、複素ヒルベルト空間上の線形作用素で、自分自身と形式共役になるようなもののことである。 物理学の特に量子力学の文脈では作用素のことを「演算子」と呼ぶ。そのため、エルミート作用素はエルミート演算子と呼ばれる。 エルミート作用素という名称は、エルミート行列などの研究で知られるフランス人数学者シャルル・エルミートに因む。 (ja) 작용소 이론에서 자기 수반 작용소(自己隨伴作用素, 영어: self-adjoint operator)는 스스로의 에르미트 수반이 자신과 같은 작용소이다. 유한 차원에서의 에르미트 행렬을 일반화한 개념이다. (ko) Um operador autoadjunto, hermitiano (português brasileiro) ou hermítico (português europeu) é um operador linear em um espaço vetorial com produto interno que é o adjunto de si mesmo. No caso de espaços de dimensão finita, a matriz que representa esse operador é igual à sua transposta conjugada. * Propriedades * Um operador é autoadjunto se e somente se * Todo autovalor de um operador autoadjunto é real: * Se e são autovalores diferentes associados a autovetores e . Então :Como e são distintos, temos , portanto . (pt) 在數學裏,作用於一個有限維的内积空間,一個自伴算子(self-adjoint operator)等於自己的伴隨算子;等價地說,在一组单位酉正交基下,表達自伴算子的矩陣是埃爾米特矩陣。埃爾米特矩陣等於自己的共軛轉置。根據有限維的譜定理,必定存在著一個正交歸一基,可以表達自伴算子為一個實值的對角矩陣。 (zh) Στα μαθηματικά, ένας αυτoσυζυγής τελεστής σε ένα μιγαδικό διανυσματικό χώρο V με εσωτερικό γινόμενο είναι ένας τελεστής ( μία γραμμική απεικόνιση A από τον V στον εαυτό του) που είναι ο ίδιος ο συζυγής του: . Αν V είναι πεπερασμένης διάστασης με μία δοσμένη βάση,αυτό είναι ισοδύναμο με την συνθήκη ότι ο πίνακας A είναι , δηλαδή, ίσος με το συζυγή ανάστροφό του πίνακα, τον A*. Από το πεπερασμένης διάστασης, ο V έχει τέτοια ώστε ο πίνακας A σε σχέση με τη βάση αυτή να είναι ένας διαγώνιος πίνακας με στοιχεία πραγματικούς αριθμούς. Σ'αυτό το άρθρο, οι γενικεύσεις αυτής της έννοιας αντιστοιχούν σε τελεστές για χώρους Hilbert αυθαίρετης διάστασης. (el) En mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint ou opérateur hermitien est un endomorphisme d'espace de Hilbert qui est son propre adjoint (sur un espace de Hilbert réel on dit aussi endomorphisme symétrique). Le prototype d'espace de Hilbert est un espace euclidien, c'est-à-dire un espace vectoriel sur le corps des réels, de dimension finie, et muni d'un produit scalaire. L'analogue sur le corps des complexes s'appelle un espace hermitien. Sur ces espaces de Hilbert de dimension finie, un endomorphisme autoadjoint est diagonalisable dans une certaine base orthonormale et ses valeurs propres (même dans le cas complexe) sont réelles. Les applications des propriétés structurelles d'un endomorphisme autoadjoint (donc de sa forme quadratique associée) son (fr) In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map A (from V to itself) that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension. (en) In matematica, in particolare in algebra lineare, un operatore autoaggiunto è un operatore lineare su uno spazio di Hilbert che è uguale al suo aggiunto. In letteratura si usa talvolta chiamare operatore simmetrico un operatore definito in un sottospazio di uno spazio vettoriale, il cui aggiunto non è in generale simmetrico, e operatore hermitiano un operatore densamente definito in tale spazio. Nel caso di uno spazio finito-dimensionale alcuni autori utilizzano inoltre il termine operatore simmetrico per denotare un operatore autoaggiunto nel caso reale. (it) Operator samosprzężony (hermitowski) – odwzorowanie liniowe działające na skończenie wymiarowej, zespolonej przestrzeni wektorowej takie że gdzie: – iloczyn skalarny wektorów w przestrzeni – wektor powstały w wyniku działania operatora na wektor – sprzężenie hermitowskie wektora Operatory samosprzężone używane są w analizie funkcjonalnej. Operator samosprzężony skończenie wymiarowy można reprezentować za pomocą macierzy hermitowskiej (samosprzężonej). (pl)
rdfs:label مؤثر مساعد ذاتي (ar) Samoadjungovaný operátor (cs) Selbstadjungierter Operator (de) Αυτοσυζυγής τελεστής (el) Endomorphisme autoadjoint (fr) Operatore autoaggiunto (it) 자기 수반 작용소 (ko) エルミート作用素 (ja) Self-adjoint operator (en) Operator samosprzężony (pl) Operador autoadjunto (pt) 自伴算子 (zh)
rdfs:seeAlso dbr:Extensions_of_symmetric_operators
owl:sameAs freebase:Self-adjoint operator yago-res:Self-adjoint operator wikidata:Self-adjoint operator dbpedia-ar:Self-adjoint operator dbpedia-cs:Self-adjoint operator dbpedia-de:Self-adjoint operator dbpedia-el:Self-adjoint operator dbpedia-fa:Self-adjoint operator dbpedia-fr:Self-adjoint operator dbpedia-it:Self-adjoint operator dbpedia-ja:Self-adjoint operator dbpedia-ko:Self-adjoint operator http://pa.dbpedia.org/resource/ਹਰਮਿਸ਼ਨ_ਓਪਰੇਟਰ dbpedia-pl:Self-adjoint operator dbpedia-pt:Self-adjoint operator dbpedia-zh:Self-adjoint operator https://global.dbpedia.org/id/4pnng
prov:wasDerivedFrom wikipedia-en:Self-adjoint_operator?oldid=1122496633&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Self-adjoint_operator
is dbo:wikiPageRedirects of dbr:Essentially_self-adjoint dbr:Essentially_self-adjoint_operator dbr:Symmetric_operator dbr:Hermitian_operator dbr:Hahn-Hellinger_theorem dbr:Hermitian_operators dbr:Hermiticity dbr:Self-adjoint_operators dbr:Self_adjoint_operator dbr:Selfadjoint_operator
is dbo:wikiPageWikiLink of dbr:Canonical_commutation_relation dbr:Probability_amplitude dbr:Product_operator_formalism dbr:Quantum_Markov_semigroup dbr:Quantum_logic dbr:Quantum_logic_gate dbr:Quantum_mechanics dbr:Romanovski_polynomials dbr:Schrödinger_equation dbr:Scientific_law dbr:List_of_functional_analysis_topics dbr:Variational_principle dbr:Theoretical_and_experimental_justification_for_the_Schrödinger_equation dbr:Bell's_theorem dbr:Bra–ket_notation dbr:Almost_Mathieu_operator dbr:John_von_Neumann dbr:Riemann_hypothesis dbr:Riesz_representation_theorem dbr:Riesz–Thorin_theorem dbr:Unbounded_operator dbr:Uncertainty_principle dbr:Decomposition_of_spectrum_(functional_analysis) dbr:Introduction_to_eigenstates dbr:Invariant_subspace dbr:Von_Neumann_algebra dbr:List_of_important_publications_in_physics dbr:Positive_operator_(Hilbert_space) dbr:Proto-value_function dbr:Tsirelson's_bound dbr:Conjugate_transpose dbr:Mathematical_formulation_of_quantum_mechanics dbr:Measurement_in_quantum_mechanics dbr:Essential_spectrum dbr:Naimark's_problem dbr:Operator_theory dbr:Symmetric_matrix dbr:Quasinormal_operator dbr:Clebsch–Gordan_coefficients dbr:Eigenfunction dbr:Eigenvalues_and_eigenvectors dbr:Franz_Rellich dbr:Frigyes_Riesz dbr:Gaetano_Fichera dbr:Geometric_quantization dbr:Gleason's_theorem dbr:Momentum dbr:Conditional_expectation dbr:Conservation_of_energy dbr:Oscillator_representation dbr:Lieb–Robinson_bounds dbr:Loop_quantum_gravity dbr:Bogoliubov_inner_product dbr:Calculus_on_Euclidean_space dbr:Singular_value_decomposition dbr:Compact_operator_on_Hilbert_space dbr:Compression_(functional_analysis) dbr:Computability_in_Analysis_and_Physics dbr:Friedrichs_extension dbr:Functional_determinant dbr:Hamburger_moment_problem dbr:Hellinger–Toeplitz_theorem dbr:Projection-valued_measure dbr:Spectral_theory dbr:Spectrum_(functional_analysis) dbr:Stone's_theorem_on_one-parameter_unitary_groups dbr:Mathematical_physics dbr:Adjoint_state_method dbr:Cayley_transform dbr:Trace_inequality dbr:Gårding_domain dbr:Haag's_theorem dbr:Hecke_algebra dbr:Hecke_operator dbr:Position_operator dbr:Curvature dbr:Essentially_self-adjoint dbr:Essentially_self-adjoint_operator dbr:Extensions_of_symmetric_operators dbr:Fock_state dbr:Causal_fermion_systems dbr:Differential_operator dbr:Dirac_adjoint dbr:Dirac–von_Neumann_axioms dbr:Directional_derivative dbr:Glossary_of_functional_analysis dbr:Hilbert–Pólya_conjecture dbr:Hilbert–Schmidt_integral_operator dbr:Hilbert–Schmidt_theorem dbr:History_of_loop_quantum_gravity dbr:Kaplansky_density_theorem dbr:Projection_(linear_algebra) dbr:Relational_quantum_mechanics dbr:Heat_equation dbr:Hermitian_adjoint dbr:Hermitian_matrix dbr:Hilbert_space dbr:Asymmetry dbr:Atkin–Lehner_theory dbr:Covariance_operator dbr:Quantum_operation dbr:Laplace_operator dbr:Symmetry_in_mathematics dbr:Coercive_function dbr:Effect_algebra dbr:Trace_class dbr:Wightman_axioms dbr:Discrete_Laplace_operator dbr:Marshall_H._Stone dbr:Borel_functional_calculus dbr:Born_rule dbr:CCR_and_CAR_algebras dbr:CPT_symmetry dbr:C_parity dbr:Photon_polarization dbr:Spectral_theorem dbr:Spectral_theory_of_normal_C*-algebras dbr:Spectral_theory_of_ordinary_differential_equations dbr:Spherical_harmonics dbr:Fredholm_module dbr:Green's_identities dbr:Koopman–von_Neumann_classical_mechanics dbr:Kähler_identities dbr:Min-max_theorem dbr:Real_number dbr:Quantum_indeterminacy dbr:Support_(measure_theory) dbr:Two-state_quantum_system dbr:Nevanlinna_function dbr:Superselection dbr:List_of_things_named_after_Charles_Hermite dbr:List_of_unsolved_problems_in_mathematics dbr:Observable dbr:Zeta_function_regularization dbr:Total_subset dbr:Symmetric_logarithmic_derivative dbr:Symmetric_operator dbr:Hermitian_operator dbr:Multiplication_operator dbr:Yang–Mills_existence_and_mass_gap dbr:Unitary_equivalence dbr:Self-adjoint dbr:Hahn-Hellinger_theorem dbr:Weyl–von_Neumann_theorem dbr:Hermitian_operators dbr:Hermiticity dbr:Self-adjoint_operators dbr:Self_adjoint_operator dbr:Selfadjoint_operator
is rdfs:seeAlso of dbr:Riesz_representation_theorem
is foaf:primaryTopic of wikipedia-en:Self-adjoint_operator