Hosoya index (original) (raw)

About DBpedia

The Hosoya index, also known as the Z index, of a graph is the total number of matchings in it. The Hosoya index is always at least one, because the empty set of edges is counted as a matching for this purpose. Equivalently, the Hosoya index is the number of non-empty matchings plus one. The index is named after Haruo Hosoya. It is used as a topological index in chemical graph theory. Complete graphs have the largest Hosoya index for any given number of vertices; their Hosoya indices are the telephone numbers.

thumbnail

Property Value
dbo:abstract The Hosoya index, also known as the Z index, of a graph is the total number of matchings in it. The Hosoya index is always at least one, because the empty set of edges is counted as a matching for this purpose. Equivalently, the Hosoya index is the number of non-empty matchings plus one. The index is named after Haruo Hosoya. It is used as a topological index in chemical graph theory. Complete graphs have the largest Hosoya index for any given number of vertices; their Hosoya indices are the telephone numbers. (en) En théorie des graphes, l'indice de Hosoya d'un graphe, également connu sous le nom d'indice Z, est le nombre total de couplages que possède ce graphe. L'indice de Hosoya est toujours au moins égal à 1, parce que par convention l'ensemble vide d'arêtes est compté comme un couplage dans ce contexte. De manière équivalente, l'indice de Hosoya est le nombre de couplages non vides plus un. L'indice porte le nom de (en). (fr) グラフ理論における細矢インデックスまたはZインデックスとは、与えられたグラフのマッチングの総数のことである。このとき辺の空集合もマッチングの一つとして数えるので、細矢インデックスは必ず1以上である。同じことだが、「グラフの空でないマッチングの個数に1を足した値」と定義してもよい。 (ja) (Топологический) индекс Хосойи, известный также как Z индекс, графа — это полное число паросочетаний на нём. Индекс Хосойи всегда больше либо равен одному, поскольку пустое множество рёбер считается как паросочетание. Эквивалентно, индекс Хосойи — это число непустых паросочетаний плюс один. (ru)
dbo:thumbnail wiki-commons:Special:FilePath/K4_matchings.svg?width=300
dbo:wikiPageID 14221581 (xsd:integer)
dbo:wikiPageLength 7810 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1119368502 (xsd:integer)
dbo:wikiPageWikiLink dbr:Propane dbr:Path_graph dbr:University_of_Tokyo dbr:Upper_bound dbr:Topological_index dbc:Graph_invariants dbc:Matching_(graph_theory) dbr:Complete_graph dbc:Cheminformatics dbr:Matching_(graph_theory) dbr:Chemical_graph_theory dbr:Organic_compound dbr:Clique-width dbc:Mathematical_chemistry dbr:Graph_(discrete_mathematics) dbr:Boiling_point dbr:Empty_set dbr:Matching_polynomial dbr:Butane dbr:Treewidth dbr:Haruo_Hosoya dbr:Alkane dbr:Ethane dbr:Fibonacci_number dbr:Fixed-parameter_tractability dbr:Isobutane dbr:Isomers dbr:Telephone_number_(mathematics) dbr:Summation dbr:Planar_graph dbr:Polynomial-time_approximation_scheme dbr:Fibonacci_cube dbr:Graph_invariant dbr:Polynomial_time dbr:Approximation_ratio dbr:Methane dbr:Wiley-VCH dbr:Factorial dbr:Sharp-P-complete dbr:Chemoinformatics dbr:File:K4_matchings.svg
dbp:wikiPageUsesTemplate dbt:ISBN dbt:OEIS dbt:Reflist dbt:Short_description dbt:Bi
dcterms:subject dbc:Graph_invariants dbc:Matching_(graph_theory) dbc:Cheminformatics dbc:Mathematical_chemistry
gold:hypernym dbr:Number
rdf:type yago:Abstraction100002137 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Feature105849789 yago:Idea105833840 yago:Invariant105850432 yago:Property105849040 yago:PsychologicalFeature100023100 yago:WikicatGraphInvariants
rdfs:comment The Hosoya index, also known as the Z index, of a graph is the total number of matchings in it. The Hosoya index is always at least one, because the empty set of edges is counted as a matching for this purpose. Equivalently, the Hosoya index is the number of non-empty matchings plus one. The index is named after Haruo Hosoya. It is used as a topological index in chemical graph theory. Complete graphs have the largest Hosoya index for any given number of vertices; their Hosoya indices are the telephone numbers. (en) En théorie des graphes, l'indice de Hosoya d'un graphe, également connu sous le nom d'indice Z, est le nombre total de couplages que possède ce graphe. L'indice de Hosoya est toujours au moins égal à 1, parce que par convention l'ensemble vide d'arêtes est compté comme un couplage dans ce contexte. De manière équivalente, l'indice de Hosoya est le nombre de couplages non vides plus un. L'indice porte le nom de (en). (fr) グラフ理論における細矢インデックスまたはZインデックスとは、与えられたグラフのマッチングの総数のことである。このとき辺の空集合もマッチングの一つとして数えるので、細矢インデックスは必ず1以上である。同じことだが、「グラフの空でないマッチングの個数に1を足した値」と定義してもよい。 (ja) (Топологический) индекс Хосойи, известный также как Z индекс, графа — это полное число паросочетаний на нём. Индекс Хосойи всегда больше либо равен одному, поскольку пустое множество рёбер считается как паросочетание. Эквивалентно, индекс Хосойи — это число непустых паросочетаний плюс один. (ru)
rdfs:label Indice de Hosoya (fr) Hosoya index (en) 細矢インデックス (ja) Индекс Хосойи (ru)
owl:sameAs freebase:Hosoya index yago-res:Hosoya index wikidata:Hosoya index dbpedia-fr:Hosoya index dbpedia-ja:Hosoya index dbpedia-ru:Hosoya index https://global.dbpedia.org/id/3tcqF
prov:wasDerivedFrom wikipedia-en:Hosoya_index?oldid=1119368502&ns=0
foaf:depiction wiki-commons:Special:FilePath/K4_matchings.svg
foaf:isPrimaryTopicOf wikipedia-en:Hosoya_index
is dbo:wikiPageDisambiguates of dbr:Hosoya
is dbo:wikiPageWikiLink of dbr:Topological_index dbr:Complete_graph dbr:Matching_(graph_theory) dbr:Number_matching dbr:Hosoya dbr:Matching_polynomial dbr:Haruo_Hosoya dbr:Graph_property dbr:Telephone_number_(mathematics) dbr:FKT_algorithm
is foaf:primaryTopic of wikipedia-en:Hosoya_index