Successor function (original) (raw)
In mathematics, the successor function or successor operation sends a natural number to the next one. The successor function is denoted by S, so S(n) = n + 1. For example, S(1) = 2 and S(2) = 3. The successor function is one of the basic components used to build a primitive recursive function. Successor operations are also known as zeration in the context of a zeroth hyperoperation: H0(a, b) = 1 + b. In this context, the extension of zeration is addition, which is defined as repeated succession.
Property | Value |
---|---|
dbo:abstract | En mathématiques, la fonction successeur est une fonction récursive primitive S telle que S(n) = n+1 pour tout entier naturel n. Par exemple, S(1) = 2 et S(2) = 3. La fonction successeur apparaît dans les axiomes de Peano qui définissent les entiers naturels. Elle n'y est pas définie à partir de l'opération d'addition, mais est une opération primitive qui sert à définir les entiers naturels à partir de 0, mais aussi les autres opérations sur les entiers naturels, dont l'addition. Par exemple, 1 est S(0), et l'addition sur les entiers est définie récursivement par: Par exemple. 5 + 2 = 5 + S(1) = S(5) + 1 = 6 + 1 = 6 + S(0) = S(6) + 0 = 7 + 0 = 7 Pour construire les nombres entiers en théorie des ensembles, une approche classique consiste à définir le nombre 0 par l'ensemble vide {}, et le successeur S(x) par x ∪ { x }. L'axiome de l'infini garantit alors l'existence d'un ensemble ℕ qui contient 0 et qui est clos par successeur, pris comme définition de l'ensemble des nombres entiers naturels. La fonction successeur est le niveau 0 de la hiérarchie infinie des hyperopérations (utilisées pour construire l'addition, la multiplication, l'exponentiation, etc.). (fr) In mathematics, the successor function or successor operation sends a natural number to the next one. The successor function is denoted by S, so S(n) = n + 1. For example, S(1) = 2 and S(2) = 3. The successor function is one of the basic components used to build a primitive recursive function. Successor operations are also known as zeration in the context of a zeroth hyperoperation: H0(a, b) = 1 + b. In this context, the extension of zeration is addition, which is defined as repeated succession. (en) 수학에서 다음수 함수(영어: successor function)또는 다음수 연산(영어: successor operation)은 자연수 n에 대해서 S(n) = n+1인 원시 재귀 함수 S이다.예를 들어, S(1) = 2이고 S(2) = 3이다. 다음수 연산은 또한 0차 하이퍼 연산의 맥락으로 제레이션(영어: zeration)으로 알려져 있다: H0(a, b) = 1 + b. (ko) 数学の分野における後者関数(こうしゃかんすう、後続者関数、英: successor function)、もしくは後者演算 (successor operation)は原始再帰関数のひとつである。後者関数 S は任意の自然数 n にその後者(後継、後続者)n + 1 を割り当てる: S(n) ≔ n + 1 (∀n)。例えばS(1) = 2 であり S(2) = 3 である。0-番目のハイパー演算 H0(a, b) ≔ 1 + b としての後者演算は「ゼレーション」("zeration") とも呼ばれる。 (ja) Em matemática, a função sucessora ou operação sucessora é uma Função recursiva primitiva tal que para cada número natural .Por exemplo, e . Operações sucessoras são também conhecidas como zeração no contexto de zeroth hiperoperação: . (pt) Successor (synonym efterföljare), begrepp inom logik. Successorn till ett naturligt tal är det minsta tal som är större än . Annorlunda uttryckt är successorn till a dess omedelbara efterföljare, därav namnet. (sv) 在 数学、 後繼函數 或 後繼運算 是一个 原始递归函数 S 使得 S(n)= n+1,n 為自然数。例如, S(1)=2和 S(2)=3。后继函數在西方国家也称为zeration,因為它是第零类超運算:H0(a, b)=1+ b。 (zh) |
dbo:wikiPageID | 325637 (xsd:integer) |
dbo:wikiPageLength | 3077 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1037249340 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Primitive_recursive_function dbr:Hyperoperation dbr:John_von_Neumann dbr:Peano_axioms dbr:Increment_and_decrement_operators dbr:Computability dbr:Computable_function dbr:Mathematics dbr:Multiplication dbr:Closure_(mathematics) dbr:Empty_set dbr:Successor_cardinal dbr:Successor_ordinal dbr:Addition dbc:Arithmetic dbr:Exponentiation dbr:Formal_language dbr:Tetration dbc:Logic_in_computer_science dbc:Mathematical_logic dbr:Axiom_of_infinity dbr:Grzegorczyk_hierarchy dbr:Natural_number dbr:Sequence dbr:Set-theoretic_definition_of_natural_numbers |
dbp:wikiPageUsesTemplate | dbt:Cite_book dbt:Other_uses dbt:Reflist dbt:Short_description dbt:Space dbt:Hyperoperations dbt:Mathlogic-stub |
dcterms:subject | dbc:Arithmetic dbc:Logic_in_computer_science dbc:Mathematical_logic |
gold:hypernym | dbr:S |
rdfs:comment | In mathematics, the successor function or successor operation sends a natural number to the next one. The successor function is denoted by S, so S(n) = n + 1. For example, S(1) = 2 and S(2) = 3. The successor function is one of the basic components used to build a primitive recursive function. Successor operations are also known as zeration in the context of a zeroth hyperoperation: H0(a, b) = 1 + b. In this context, the extension of zeration is addition, which is defined as repeated succession. (en) 수학에서 다음수 함수(영어: successor function)또는 다음수 연산(영어: successor operation)은 자연수 n에 대해서 S(n) = n+1인 원시 재귀 함수 S이다.예를 들어, S(1) = 2이고 S(2) = 3이다. 다음수 연산은 또한 0차 하이퍼 연산의 맥락으로 제레이션(영어: zeration)으로 알려져 있다: H0(a, b) = 1 + b. (ko) 数学の分野における後者関数(こうしゃかんすう、後続者関数、英: successor function)、もしくは後者演算 (successor operation)は原始再帰関数のひとつである。後者関数 S は任意の自然数 n にその後者(後継、後続者)n + 1 を割り当てる: S(n) ≔ n + 1 (∀n)。例えばS(1) = 2 であり S(2) = 3 である。0-番目のハイパー演算 H0(a, b) ≔ 1 + b としての後者演算は「ゼレーション」("zeration") とも呼ばれる。 (ja) Em matemática, a função sucessora ou operação sucessora é uma Função recursiva primitiva tal que para cada número natural .Por exemplo, e . Operações sucessoras são também conhecidas como zeração no contexto de zeroth hiperoperação: . (pt) Successor (synonym efterföljare), begrepp inom logik. Successorn till ett naturligt tal är det minsta tal som är större än . Annorlunda uttryckt är successorn till a dess omedelbara efterföljare, därav namnet. (sv) 在 数学、 後繼函數 或 後繼運算 是一个 原始递归函数 S 使得 S(n)= n+1,n 為自然数。例如, S(1)=2和 S(2)=3。后继函數在西方国家也称为zeration,因為它是第零类超運算:H0(a, b)=1+ b。 (zh) En mathématiques, la fonction successeur est une fonction récursive primitive S telle que S(n) = n+1 pour tout entier naturel n. Par exemple, S(1) = 2 et S(2) = 3. La fonction successeur apparaît dans les axiomes de Peano qui définissent les entiers naturels. Elle n'y est pas définie à partir de l'opération d'addition, mais est une opération primitive qui sert à définir les entiers naturels à partir de 0, mais aussi les autres opérations sur les entiers naturels, dont l'addition. Par exemple, 1 est S(0), et l'addition sur les entiers est définie récursivement par: (fr) |
rdfs:label | Fonction successeur (fr) 다음수 함수 (ko) 後者関数 (ja) Função sucessora (pt) Successor function (en) Successor (sv) 後繼函數 (zh) |
owl:sameAs | freebase:Successor function wikidata:Successor function dbpedia-fa:Successor function dbpedia-fr:Successor function dbpedia-ja:Successor function dbpedia-ko:Successor function dbpedia-pt:Successor function dbpedia-sv:Successor function dbpedia-vi:Successor function dbpedia-zh:Successor function https://global.dbpedia.org/id/4vYG5 |
prov:wasDerivedFrom | wikipedia-en:Successor_function?oldid=1037249340&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Successor_function |
is dbo:wikiPageDisambiguates of | dbr:Successor |
is dbo:wikiPageRedirects of | dbr:Zeration dbr:Hyper-0 dbr:Hyper0 dbr:0-ation dbr:Successor_map |
is dbo:wikiPageWikiLink of | dbr:Proof_sketch_for_Gödel's_first_incompleteness_theorem dbr:List_of_first-order_theories dbr:Monus dbr:Path_ordering_(term_rewriting) dbr:Hyperoperation dbr:Peano_axioms dbr:Richard_Dedekind dbr:Increment_and_decrement_operators dbr:Induction_variable dbr:Initial_algebra dbr:Intuitionistic_type_theory dbr:List_of_paradoxes dbr:Proofs_involving_the_addition_of_natural_numbers dbr:+1 dbr:Mathematical_logic dbr:Rewriting dbr:Church–Turing_thesis dbr:Function_(mathematics) dbr:Constructive_set_theory dbr:Equivalent_definitions_of_mathematical_structures dbr:Arity dbr:Succession dbr:Zeration dbr:Functional_programming dbr:Successor dbr:Typographical_Number_Theory dbr:Mathematics,_Form_and_Function dbr:1 dbr:Transitive_relation dbr:Robinson_arithmetic dbr:Addition dbr:Agda_(programming_language) dbr:Four_fours dbr:Parity_of_zero dbr:Carleman_matrix dbr:Church_encoding dbr:Foundations_of_mathematics dbr:Knuth's_up-arrow_notation dbr:Primitive_notion dbr:Serial_relation dbr:Tetration dbr:Arithmetic dbr:Axiom dbr:Axiomatic_system dbr:Grzegorczyk_hierarchy dbr:Inductive_type dbr:Natural_number dbr:Natural_numbers_object dbr:Origin_of_language dbr:Search_problem dbr:Second-order_arithmetic dbr:Unary_function dbr:Finitism dbr:ST_type_theory dbr:Scott–Potter_set_theory dbr:Set-theoretic_definition_of_natural_numbers dbr:Ultrafinitism dbr:Outline_of_algebraic_structures dbr:Outline_of_discrete_mathematics dbr:Hyper-0 dbr:Hyper0 dbr:0-ation dbr:Successor_map |
is foaf:primaryTopic of | wikipedia-en:Successor_function |