dbo:abstract |
In der Mathematik bezeichnet der Begriff IP-Menge eine Menge natürlicher Zahlen, die alle endlichen Summen einer unendlichen Menge von natürlichen Zahlen enthält. Die Bezeichnung IP-Menge (IP-set) geht auf Hillel Fürstenberg und zurück; IP steht dabei für „Infinite-dimensional Parallelepiped“. (de) In mathematics, an IP set is a set of natural numbers which contains all finite sums of some infinite set. The finite sums of a set D of natural numbers are all those numbers that can be obtained by adding up the elements of some finite nonempty subset of D.The set of all finite sums over D is often denoted as FS(D). Slightly more generally, for a sequence of natural numbers (ni), one can consider the set of finite sums FS((ni)), consisting of the sums of all finite length subsequences of (ni). A set A of natural numbers is an IP set if there exists an infinite set D such that FS(D) is a subset of A. Equivalently, one may require that A contains all finite sums FS((ni)) of a sequence (ni). Some authors give a slightly different definition of IP sets: They require that FS(D) equal A instead of just being a subset. The term IP set was coined by Hillel Furstenberg and Benjamin Weiss to abbreviate "infinite-dimensional parallelepiped". Serendipitously, the abbreviation IP can also be expanded to "idempotent" (a set is IP if and only if it is a member of an idempotent ultrafilter). (en) |
dbo:wikiPageExternalLink |
http://home.hia.no/~ingerjh/forskning/bhm2jun03.pdf http://nhindman.us/research/large.pdf https://web.archive.org/web/20061117184558/http:/www.mtholyoke.edu/~jmcleod/somenotionsofsize.pdf http://www.math.ohio-state.edu/~vitaly/vbkatsiveli20march03.pdf |
dbo:wikiPageID |
3999498 (xsd:integer) |
dbo:wikiPageLength |
6031 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1118152741 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Non-empty_set dbr:Benjamin_Weiss dbr:Infinite_set dbc:Semigroup_theory dbr:Mathematics dbr:Piecewise_syndetic_set dbr:Ergodic_Ramsey_theory dbr:Syndetic_set dbr:Semigroup dbr:Parallelepiped dbr:Journal_of_Combinatorial_Theory dbr:Ultrafilter dbr:Hillel_Furstenberg dbc:Ramsey_theory dbc:Ergodic_theory dbr:Thick_set dbr:Natural_number dbr:Ramsey's_theorem dbr:Vitaly_Bergelson dbr:Milliken–Taylor_theorem dbr:Partition_regular dbr:Neil_Hindman |
dbp:wikiPageUsesTemplate |
dbt:Citation_style dbt:Cite_journal dbt:Reflist |
dct:subject |
dbc:Semigroup_theory dbc:Ramsey_theory dbc:Ergodic_theory |
gold:hypernym |
dbr:Set |
rdfs:comment |
In der Mathematik bezeichnet der Begriff IP-Menge eine Menge natürlicher Zahlen, die alle endlichen Summen einer unendlichen Menge von natürlichen Zahlen enthält. Die Bezeichnung IP-Menge (IP-set) geht auf Hillel Fürstenberg und zurück; IP steht dabei für „Infinite-dimensional Parallelepiped“. (de) In mathematics, an IP set is a set of natural numbers which contains all finite sums of some infinite set. The finite sums of a set D of natural numbers are all those numbers that can be obtained by adding up the elements of some finite nonempty subset of D.The set of all finite sums over D is often denoted as FS(D). Slightly more generally, for a sequence of natural numbers (ni), one can consider the set of finite sums FS((ni)), consisting of the sums of all finite length subsequences of (ni). (en) |
rdfs:label |
IP-Menge (de) IP set (en) |
owl:sameAs |
freebase:IP set wikidata:IP set dbpedia-de:IP set https://global.dbpedia.org/id/Z3n9 |
prov:wasDerivedFrom |
wikipedia-en:IP_set?oldid=1118152741&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:IP_set |
is dbo:knownFor of |
dbr:Hillel_Furstenberg |
is dbo:wikiPageRedirects of |
dbr:Hindman's_theorem dbr:Hindman’s_theorem |
is dbo:wikiPageWikiLink of |
dbr:List_of_exceptional_set_concepts dbr:Piecewise_syndetic_set dbr:Ergodic_Ramsey_theory dbr:Partition_regularity dbr:Hillel_Furstenberg dbr:Milliken–Taylor_theorem dbr:Slicing_the_Truth dbr:Hindman's_theorem dbr:Hindman’s_theorem |
is dbp:knownFor of |
dbr:Hillel_Furstenberg |
is foaf:primaryTopic of |
wikipedia-en:IP_set |