Magic hypercube (original) (raw)
En mathématiques, un hypercube magique de dimension d est la généralisation d'un carré magique (d = 2), d'un cube magique (d = 3) et d'un tesseract magique (d = 4), c'est-à-dire un ensemble d'entiers strictement positifs arrangés dans un motif de taille n × n × n × ... × n tel que la somme des nombres de chaque pile (le long de chaque axe) ainsi que des (en) principales est égale à un nombre unique, qu'on appelle alors la constante magique de l'hypercube. Le nombre n est appelé l'ordre de l'hypercube.
Property | Value |
---|---|
dbo:abstract | In mathematics, a magic hypercube is the k-dimensional generalization of magic squares and magic cubes, that is, an n × n × n × ... × n array of integers such that the sums of the numbers on each pillar (along any axis) as well as on the main space diagonals are all the same. The common sum is called the magic constant of the hypercube, and is sometimes denoted Mk(n). If a magic hypercube consists of the numbers 1, 2, ..., nk, then it has magic number . For k = 4, a magic hypercube may be called a magic tesseract, with sequence of magic numbers given by OEIS: . The side-length n of the magic hypercube is called its order. Four-, five-, six-, seven- and eight-dimensional magic hypercubes of order three have been constructed by J. R. Hendricks. Marian Trenkler proved the following theorem:A p-dimensional magic hypercube of order n exists if and only ifp > 1 and n is different from 2 or p = 1. A construction of a magic hypercube follows from the proof. The R programming language includes a module, library(magic), that will create magic hypercubes of any dimension with n a multiple of 4. (en) En mathématiques, un hypercube magique de dimension d est la généralisation d'un carré magique (d = 2), d'un cube magique (d = 3) et d'un tesseract magique (d = 4), c'est-à-dire un ensemble d'entiers strictement positifs arrangés dans un motif de taille n × n × n × ... × n tel que la somme des nombres de chaque pile (le long de chaque axe) ainsi que des (en) principales est égale à un nombre unique, qu'on appelle alors la constante magique de l'hypercube. Le nombre n est appelé l'ordre de l'hypercube. (fr) Een magische hyperkubus is een uitbreiding van een magisch vierkant en de magische kubus. Een magische hyperkubus heeft meer dan drie dimensies, hoewel het magische vierkant en de magische kubus ook als vormen van een magische hyperkubus beschouwd kunnen worden. (nl) Na matemática, um hipercubo mágico é uma extensão do quadrado mágico para diversas dimensões. Isto demonstra que o número de inteiros arranjado da forma padrão n × n × n × ... × n possui uma soma linear padrão para qualquer linha desejada, através de um objeto Mk(n), possuindo assim o número mágico (pt) |
dbo:wikiPageExternalLink | http://math.ku.sk/~trenkler/Cube-Ref.html http://multimagie.com/indexengl.htm http://www.magichypercubes.com/Encyclopedia http://www.magichypercubes.com/Encyclopedia/d/DynamicNumbering.html http://www.magichypercubes.com/Encyclopedia/index.html http://www.magichypercubes.com/Encyclopedia/k/PathNasiks.zip http://www.multimagie.com/ http://math.ku.sk/~trenkler/05-MagicCube.pdf http://www.magichypercube.com http://homepage2.nifty.com/googol/magcube/en/ http://homepage2.nifty.com/googol/magcube/en/rectangles.htm http://members.shaw.ca/hdhcubes/cube_perfect.htm http://members.shaw.ca/hdhcubes/index.htm%236%20Classes%20of%20Cubes http://www.trump.de/magic-squares/magic-cubes/cubes-1.html http://members.shaw.ca/johnhendricksmath/ |
dbo:wikiPageID | 372467 (xsd:integer) |
dbo:wikiPageLength | 29700 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1114776966 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Deolali dbr:Permutation dbc:Recreational_mathematics dbr:Cross_section_(geometry) dbr:Mathematics dbr:Magic_square dbr:Maharashtra dbr:Faulhaber's_formula dbr:Magic_constant dbr:Magic_cube dbr:Magic_cube_classes dbr:Perfect_magic_cube dbc:Magic_squares dbr:D_R_Kaprekar dbr:Pandiagonal_magic_square dbr:Cardinality dbr:Discrete_Mathematics_(journal) dbr:Isomorphism dbr:John_R._Hendricks dbr:Magic_hypercubes dbr:Kathleen_Ollerenshaw dbr:Dimension dbr:India dbr:Integers dbr:R_(programming_language) dbr:Nasik_magic_hypercube dbr:Most-perfect_magic_square dbr:Space_diagonal dbr:J._R._Hendricks dbr:Nasik dbr:Help:Displaying_a_formula |
dbp:wikiPageUsesTemplate | dbt:Cleanup dbt:Essay-like dbt:ISBN dbt:Multiple_issues dbt:Quotation dbt:Refimprove dbt:Reflist dbt:See_also dbt:Sfrac dbt:Technical dbt:OEIS2C dbt:Magic_polygons |
dcterms:subject | dbc:Recreational_mathematics dbc:Magic_squares |
rdf:type | owl:Thing yago:WikicatMagicSquares yago:Abstraction100002137 yago:Arrangement107938773 yago:Array107939382 yago:Group100031264 yago:MagicSquare108269707 yago:Matrix108267640 yago:SquareMatrix108268085 |
rdfs:comment | En mathématiques, un hypercube magique de dimension d est la généralisation d'un carré magique (d = 2), d'un cube magique (d = 3) et d'un tesseract magique (d = 4), c'est-à-dire un ensemble d'entiers strictement positifs arrangés dans un motif de taille n × n × n × ... × n tel que la somme des nombres de chaque pile (le long de chaque axe) ainsi que des (en) principales est égale à un nombre unique, qu'on appelle alors la constante magique de l'hypercube. Le nombre n est appelé l'ordre de l'hypercube. (fr) Een magische hyperkubus is een uitbreiding van een magisch vierkant en de magische kubus. Een magische hyperkubus heeft meer dan drie dimensies, hoewel het magische vierkant en de magische kubus ook als vormen van een magische hyperkubus beschouwd kunnen worden. (nl) Na matemática, um hipercubo mágico é uma extensão do quadrado mágico para diversas dimensões. Isto demonstra que o número de inteiros arranjado da forma padrão n × n × n × ... × n possui uma soma linear padrão para qualquer linha desejada, através de um objeto Mk(n), possuindo assim o número mágico (pt) In mathematics, a magic hypercube is the k-dimensional generalization of magic squares and magic cubes, that is, an n × n × n × ... × n array of integers such that the sums of the numbers on each pillar (along any axis) as well as on the main space diagonals are all the same. The common sum is called the magic constant of the hypercube, and is sometimes denoted Mk(n). If a magic hypercube consists of the numbers 1, 2, ..., nk, then it has magic number . For k = 4, a magic hypercube may be called a magic tesseract, with sequence of magic numbers given by OEIS: . (en) |
rdfs:label | Hypercube magique (fr) Magic hypercube (en) Magische hyperkubus (nl) Hipercubo mágico (pt) |
rdfs:seeAlso | dbr:Magic_Cube_Classes |
owl:sameAs | freebase:Magic hypercube yago-res:Magic hypercube wikidata:Magic hypercube dbpedia-fr:Magic hypercube dbpedia-nl:Magic hypercube dbpedia-pt:Magic hypercube https://global.dbpedia.org/id/NdVb |
prov:wasDerivedFrom | wikipedia-en:Magic_hypercube?oldid=1114776966&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Magic_hypercube |
is dbo:wikiPageRedirects of | dbr:Magic_hyperbeam dbr:Magic_Hyperbeam dbr:Magic_hypercubes dbr:Nasik_magic_hypercube dbr:Magic_rectangle dbr:Magic_tesseract dbr:Perfect_magic_tesseract dbr:Semiperfect_magic_tesseract |
is dbo:wikiPageWikiLink of | dbr:List_of_recreational_number_theory_topics dbr:Magic_square dbr:Magic_cube dbr:Magic_cube_classes dbr:Magic_hyperbeam dbr:John_R._Hendricks dbr:Magic_Hyperbeam dbr:Magic_hypercubes dbr:Nasik_magic_hypercube dbr:Magic_rectangle dbr:Magic_tesseract dbr:Perfect_magic_tesseract dbr:Semiperfect_magic_tesseract |
is foaf:primaryTopic of | wikipedia-en:Magic_hypercube |