Non-integer base of numeration (original) (raw)

About DBpedia

A non-integer representation uses non-integer numbers as the radix, or base, of a positional numeral system. For a non-integer radix β > 1, the value of is The numbers di are non-negative integers less than β. This is also known as a β-expansion, a notion introduced by and first studied in detail by . Every real number has at least one (possibly infinite) β-expansion. The set of all β-expansions that have a finite representation is a subset of the ring Z[β, β−1]. There are applications of β-expansions in coding theory and models of quasicrystals .

Property Value
dbo:abstract A non-integer representation uses non-integer numbers as the radix, or base, of a positional numeral system. For a non-integer radix β > 1, the value of is The numbers di are non-negative integers less than β. This is also known as a β-expansion, a notion introduced by and first studied in detail by . Every real number has at least one (possibly infinite) β-expansion. The set of all β-expansions that have a finite representation is a subset of the ring Z[β, β−1]. There are applications of β-expansions in coding theory and models of quasicrystals . (en) Une numération en base non entière ou représentation non entière d'un nombre utilise, comme base de la notation positionnelle, un nombre qui n'est pas un entier. Si la base est notée , l'écriture dénote, comme dans les autres notations positionnelles, le nombre . Les nombres sont des entiers positifs ou nuls plus petits que . L'expression est aussi connue sous le terme β-développement (en anglais β-expansion). Tout nombre réel possède au moins un, et éventuellement une infinité de β-développements. La notion a été introduite par le mathématicien hongrois Alfréd Rényi en 1957 et étudiée en détail ensuite par William Parry en 1960. Depuis, de nombreux développements ultérieurs ont été apportés, dans le cadre de la théorie des nombres et de l’informatique théorique. Il y a des applications en théorie des codes et dans la modélisation de quasi-cristaux. (fr) 非整数进位制是指底数不是正整數的进位制。對於一個非正整數的底數β > 1,以下的數值:為 而數字di為小於β的非負整數。此進位制可以配合所使用β,稱為β进制或β展開,後者的名稱是數學家Rényi在1957年開始使用,而數學家Parry在1960年第一個進行相關的研究。每一個實數至少有一個β进位制的表示方式(也可能是無限多個)。 β进制可以應用在编码理论及準晶體模型的描述。 (zh)
dbo:wikiPageExternalLink http://intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0008/0004/00019835/index.html http://www.americanscientist.org/issues/pub/third-base/2%7Cyear=2001%7Cvolume=89%7Cissue=6%7Cpages=490%E2%80%93494%7Cdoi=10.1511/2001.40.3268 https://books.google.com/books%3Fid=I3fC6batwokC&pg=PA154 https://web.archive.org/web/20160324100419/http:/www.americanscientist.org/issues/pub/2001/11/third-base/2
dbo:wikiPageID 6832938 (xsd:integer)
dbo:wikiPageLength 14849 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1123661732 (xsd:integer)
dbo:wikiPageWikiLink dbr:Cambridge_University_Press dbr:Power_series dbr:Binary_numeral_system dbr:Beta_encoder dbr:Regular_octagon dbr:0.999... dbc:Ring_theory dbr:Common_logarithm dbr:Quasicrystal dbr:Circle dbr:Circumference dbr:Golden_ratio dbr:Ostrowski_numeration dbr:Silver_ratio dbr:Dense_set dbr:Perimeter dbc:Non-standard_positional_numeral_systems dbr:American_Mathematical_Monthly dbc:Number_theory dbr:E_(mathematical_constant) dbc:Coding_theory dbr:Floor_function dbr:Diagonal dbr:Radius dbr:Radix dbr:Ring_(mathematics) dbr:JavaScript dbr:Area dbr:Supergolden_ratio dbr:Coding_theory dbr:Edge_(geometry) dbr:Diameter dbr:Pi dbr:Positional_notation dbr:Square_(geometry) dbr:Square_root_of_2 dbr:Field_extension dbr:Greedy_algorithm dbr:Integer dbr:Natural_logarithm dbr:Rational_number dbr:Real_number dbr:Set_(mathematics) dbr:Pseudocode dbr:Non-standard_positional_numeral_systems dbr:Lexicographical_order dbr:Radix_economy dbr:Subset dbr:Decimal_expansion dbr:There_exists
dbp:title Base (en)
dbp:urlname Base (en)
dbp:wikiPageUsesTemplate dbt:Citation dbt:Harv dbt:Harvtxt dbt:Main dbt:Math dbt:Mathworld dbt:More_footnotes_needed dbt:Mvar dbt:Numeral_systems dbt:Pi dbt:Radic dbt:Reflist dbt:Short_description dbt:Val dbt:Harvnb dbt:Mset
dct:subject dbc:Ring_theory dbc:Non-standard_positional_numeral_systems dbc:Number_theory dbc:Coding_theory
rdfs:comment A non-integer representation uses non-integer numbers as the radix, or base, of a positional numeral system. For a non-integer radix β > 1, the value of is The numbers di are non-negative integers less than β. This is also known as a β-expansion, a notion introduced by and first studied in detail by . Every real number has at least one (possibly infinite) β-expansion. The set of all β-expansions that have a finite representation is a subset of the ring Z[β, β−1]. There are applications of β-expansions in coding theory and models of quasicrystals . (en) 非整数进位制是指底数不是正整數的进位制。對於一個非正整數的底數β > 1,以下的數值:為 而數字di為小於β的非負整數。此進位制可以配合所使用β,稱為β进制或β展開,後者的名稱是數學家Rényi在1957年開始使用,而數學家Parry在1960年第一個進行相關的研究。每一個實數至少有一個β进位制的表示方式(也可能是無限多個)。 β进制可以應用在编码理论及準晶體模型的描述。 (zh) Une numération en base non entière ou représentation non entière d'un nombre utilise, comme base de la notation positionnelle, un nombre qui n'est pas un entier. Si la base est notée , l'écriture dénote, comme dans les autres notations positionnelles, le nombre . (fr)
rdfs:label Numération en base non entière (fr) Non-integer base of numeration (en) 非整数进位制 (zh)
owl:sameAs wikidata:Non-integer base of numeration dbpedia-fr:Non-integer base of numeration dbpedia-zh:Non-integer base of numeration https://global.dbpedia.org/id/4nz2s
prov:wasDerivedFrom wikipedia-en:Non-integer_base_of_numeration?oldid=1123661732&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Non-integer_base_of_numeration
is dbo:wikiPageRedirects of dbr:Non-integer_base dbr:Non-integer_representation dbr:Beta-expansion dbr:Beta-expansions dbr:Β-expansion dbr:Β-expansions
is dbo:wikiPageWikiLink of dbr:Non-integer_base dbr:Non-integer_representation dbr:Radix_economy dbr:Beta-expansion dbr:Beta-expansions dbr:Β-expansion dbr:Β-expansions
is foaf:primaryTopic of wikipedia-en:Non-integer_base_of_numeration