Probabilistic metric space (original) (raw)

About DBpedia

In mathematics, probabilistic metric spaces are a generalization of metric spaces where the distance no longer takes values in the non-negative real numbers R ≥ 0, but in distribution functions. Let D+ be the set of all probability distribution functions F such that F(0) = 0 (F is a nondecreasing, left continuous mapping from R into [0, 1] such that max(F) = 1). Then given a non-empty set S and a function F: S × S → D+ where we denote F(p, q) by Fp,q for every (p, q) ∈ S × S, the ordered pair (S, F) is said to be a probabilistic metric space if:

thumbnail

Property Value
dbo:abstract In mathematics, probabilistic metric spaces are a generalization of metric spaces where the distance no longer takes values in the non-negative real numbers R ≥ 0, but in distribution functions. Let D+ be the set of all probability distribution functions F such that F(0) = 0 (F is a nondecreasing, left continuous mapping from R into [0, 1] such that max(F) = 1). Then given a non-empty set S and a function F: S × S → D+ where we denote F(p, q) by Fp,q for every (p, q) ∈ S × S, the ordered pair (S, F) is said to be a probabilistic metric space if: * For all u and v in S, u = v if and only if Fu,v(x) = 1 for all x > 0. * For all u and v in S, Fu,v = Fv,u. * For all u, v and w in S, Fu,v(x) = 1 and Fv,w(y) = 1 ⇒ Fu,w(x + y) = 1 for x, y > 0. (en)
dbo:thumbnail wiki-commons:Special:FilePath/Probability_metric_DNN.png?width=300
dbo:wikiPageID 3891878 (xsd:integer)
dbo:wikiPageLength 5068 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1088826402 (xsd:integer)
dbo:wikiPageWikiLink dbr:Euclidean_metric dbr:Standard_deviation dbr:Continuous_mapping dbr:Mathematics dbr:Maximum dbr:Mean dbr:Empty_set dbr:Identity_of_indiscernibles dbr:Ordered_pair dbc:Probability_distributions dbr:Distance dbr:Error_function dbr:Expected_value dbr:Normal_distribution dbr:Dirac_delta dbr:Probability_density_function dbr:Random_variable dbc:Metric_geometry dbr:Metric_space dbr:Real_numbers dbr:Metric_(mathematics) dbr:Random_vector dbr:File:Probability_metric_DNN.png
dbp:wikiPageUsesTemplate dbt:Math dbt:Space dbt:Unreferenced dbt:Mathanalysis-stub
dcterms:subject dbc:Probability_distributions dbc:Metric_geometry
gold:hypernym dbr:Generalization
rdfs:comment In mathematics, probabilistic metric spaces are a generalization of metric spaces where the distance no longer takes values in the non-negative real numbers R ≥ 0, but in distribution functions. Let D+ be the set of all probability distribution functions F such that F(0) = 0 (F is a nondecreasing, left continuous mapping from R into [0, 1] such that max(F) = 1). Then given a non-empty set S and a function F: S × S → D+ where we denote F(p, q) by Fp,q for every (p, q) ∈ S × S, the ordered pair (S, F) is said to be a probabilistic metric space if: (en)
rdfs:label Probabilistic metric space (en)
owl:sameAs freebase:Probabilistic metric space yago-res:Probabilistic metric space wikidata:Probabilistic metric space https://global.dbpedia.org/id/4tYbB
prov:wasDerivedFrom wikipedia-en:Probabilistic_metric_space?oldid=1088826402&ns=0
foaf:depiction wiki-commons:Special:FilePath/Probability_metric_DNN.png
foaf:isPrimaryTopicOf wikipedia-en:Probabilistic_metric_space
is dbo:wikiPageWikiLink of dbr:Approach_space dbr:Statistical_distance dbr:T-norm dbr:List_of_statistics_articles
is foaf:primaryTopic of wikipedia-en:Probabilistic_metric_space