dbo:abstract |
Der Satz von Schilder ist ein Theorem aus der (englisch Large Deviation Theory). Das Theorem besagt, dass eine klein-skalierte Brownsche Bewegung das Prinzip der großen Abweichungen erfüllt und somit wesentlich von verschieden ist. Eine Verallgemeinerung des Satzes ist der Satz von Freidlin-Wentzell. (de) In mathematics, Schilder's theorem is a generalization of the Laplace method from integrals on to functional Wiener integration. The theorem is used in the large deviations theory of stochastic processes. Roughly speaking, out of Schilder's theorem one gets an estimate for the probability that a (scaled-down) sample path of Brownian motion will stray far from the mean path (which is constant with value 0). This statement is made precise using rate functions. Schilder's theorem is generalized by the Freidlin–Wentzell theorem for Itō diffusions. (en) |
dbo:wikiPageExternalLink |
https://doi.org/10.2307/1994588 |
dbo:wikiPageID |
13345478 (xsd:integer) |
dbo:wikiPageLength |
6449 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1119733303 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Mathematics dbc:Large_deviations_theory dbr:Closed_set dbr:Banach_space dbc:Asymptotic_analysis dbr:Large_deviations_theory dbr:Law_(stochastic_processes) dbr:Euclidean_space dbr:Absolutely_continuous dbr:Itō_diffusion dbr:Rate_function dbr:Laplace's_method dbr:Supremum_norm dbr:Dimension dbr:Freidlin–Wentzell_theorem dbr:Brownian_motion dbc:Theorems_regarding_stochastic_processes dbr:Open_set dbr:Infimum dbr:Probability_measure dbr:Stochastic_process dbr:Open_ball dbr:Wiener_measure |
dbp:wikiPageUsesTemplate |
dbt:= dbt:Cite_book dbt:Math dbt:Radic dbt:Sfrac |
dct:subject |
dbc:Large_deviations_theory dbc:Asymptotic_analysis dbc:Theorems_regarding_stochastic_processes |
gold:hypernym |
dbr:Result |
rdf:type |
yago:WikicatStochasticProcesses yago:Abstraction100002137 yago:Cognition100023271 yago:Communication100033020 yago:Concept105835747 yago:Content105809192 yago:Hypothesis105888929 yago:Idea105833840 yago:Message106598915 yago:Model105890249 yago:Proposition106750804 yago:PsychologicalFeature100023100 yago:Statement106722453 yago:StochasticProcess113561896 yago:Theorem106752293 yago:WikicatProbabilityTheorems |
rdfs:comment |
Der Satz von Schilder ist ein Theorem aus der (englisch Large Deviation Theory). Das Theorem besagt, dass eine klein-skalierte Brownsche Bewegung das Prinzip der großen Abweichungen erfüllt und somit wesentlich von verschieden ist. Eine Verallgemeinerung des Satzes ist der Satz von Freidlin-Wentzell. (de) In mathematics, Schilder's theorem is a generalization of the Laplace method from integrals on to functional Wiener integration. The theorem is used in the large deviations theory of stochastic processes. Roughly speaking, out of Schilder's theorem one gets an estimate for the probability that a (scaled-down) sample path of Brownian motion will stray far from the mean path (which is constant with value 0). This statement is made precise using rate functions. Schilder's theorem is generalized by the Freidlin–Wentzell theorem for Itō diffusions. (en) |
rdfs:label |
Satz von Schilder (de) Schilder's theorem (en) |
owl:sameAs |
freebase:Schilder's theorem yago-res:Schilder's theorem wikidata:Schilder's theorem dbpedia-de:Schilder's theorem https://global.dbpedia.org/id/4uQwQ |
prov:wasDerivedFrom |
wikipedia-en:Schilder's_theorem?oldid=1119733303&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Schilder's_theorem |
is dbo:wikiPageDisambiguates of |
dbr:Schilder |
is dbo:wikiPageRedirects of |
dbr:Schilder_theorem |
is dbo:wikiPageWikiLink of |
dbr:Large_deviations_theory dbr:Freidlin–Wentzell_theorem dbr:Schilder_theorem dbr:Catalog_of_articles_in_probability_theory dbr:Schilder dbr:List_of_statistics_articles dbr:List_of_theorems |
is foaf:primaryTopic of |
wikipedia-en:Schilder's_theorem |