dbo:abstract |
طوبولوجيا الزمكان (بالإنجليزية: Spacetime topology) هي البنية الطوبولوجية للزمكان، وهو موضوع تمت دراسته بشكل أساسي في النسبية العامة. نماذج هذه النظرية الفيزيائية الجاذبية على أنها انحناء مشعب لورنتزيان رباعي الأبعاد (الزمكان) وبالتالي تصبح مفاهيم الطوبولوجيا مهمة في تحليل الجوانب المحلية والعالمية للزمكان. تعتبر دراسة طوبولوجيا الزمكان مهمة بشكل خاص في علم الكون الفيزيائي. (ar) Spacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold (a spacetime) and the concepts of topology thus become important in analysing local as well as global aspects of spacetime. The study of spacetime topology is especially important in physical cosmology. (en) La topologia dello spazio-tempo o topologia spazio-temporale, la struttura topologica dello spazio-tempo, è un argomento studiato principalmente nella relatività generale. Questa teoria fisica modella la gravitazione utilizzando una varietà lorentziana (uno spazio-tempo) e i concetti di topologia diventano perciò importanti nell'analisi degli aspetti sia locali che globali dello spazio-tempo. Lo studio della topologia dello spazio-tempo è importante specialmente in cosmologia fisica. (it) Topologia do espaço-tempo é a estrutura topológica do espaço-tempo, um tópico estudado principalmente na relatividade geral. Este modelos da teoria física da gravitação como uma variedade de Lorentz (um espaço-tempo) e os conceitos de topologia, assim, tornam-se importantes na análise local, bem como aspectos globais do espaço-tempo. O estudo da topologia do espaço-tempo é especialmente importante em cosmologia física. (pt) |
dbo:wikiPageExternalLink |
https://authors.library.caltech.edu/11027/1/HAWjmp76.pdf |
dbo:wikiPageID |
14263013 (xsd:integer) |
dbo:wikiPageLength |
4552 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1087547109 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Pavel_Alexandrov dbr:Geometrodynamics dbr:Closed_timelike_curve dbr:Alexandrov_topology dbr:General_relativity dbr:Gravitation dbr:Physical_theory dbr:Comparison_of_topologies dbr:Complex_spacetime dbr:Clifford-Klein_form dbr:Topology dbr:Hausdorff_space dbr:Locally_compact_space dbr:Aleksandr_Danilovich_Aleksandrov dbr:Curvature dbr:Base_(topology) dbr:Causal_structure dbr:Causality_conditions dbr:Gravitational_singularity dbr:Physical_cosmology dbr:Pseudo-Riemannian_manifold dbc:General_relativity dbc:Lorentzian_manifolds dbr:Manifold dbr:Spacetime dbr:Open_set dbr:Wormhole dbr:Topological_space dbr:Four_dimensional dbr:Finer_topology dbr:Open_(topology) dbr:Separable_(topology) dbr:Timelike_curve |
dbp:wikiPageUsesTemplate |
dbt:Citation_needed dbt:Cite_journal dbt:More dbt:Spacetime |
dct:subject |
dbc:General_relativity dbc:Lorentzian_manifolds |
gold:hypernym |
dbr:Structure |
rdf:type |
yago:WikicatLorentzianManifolds yago:Artifact100021939 yago:Conduit103089014 yago:Manifold103717750 yago:Object100002684 yago:Passage103895293 yago:PhysicalEntity100001930 yago:Pipe103944672 yago:YagoGeoEntity yago:YagoPermanentlyLocatedEntity dbo:Building yago:Tube104493505 yago:Way104564698 yago:Whole100003553 |
rdfs:comment |
طوبولوجيا الزمكان (بالإنجليزية: Spacetime topology) هي البنية الطوبولوجية للزمكان، وهو موضوع تمت دراسته بشكل أساسي في النسبية العامة. نماذج هذه النظرية الفيزيائية الجاذبية على أنها انحناء مشعب لورنتزيان رباعي الأبعاد (الزمكان) وبالتالي تصبح مفاهيم الطوبولوجيا مهمة في تحليل الجوانب المحلية والعالمية للزمكان. تعتبر دراسة طوبولوجيا الزمكان مهمة بشكل خاص في علم الكون الفيزيائي. (ar) Spacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold (a spacetime) and the concepts of topology thus become important in analysing local as well as global aspects of spacetime. The study of spacetime topology is especially important in physical cosmology. (en) La topologia dello spazio-tempo o topologia spazio-temporale, la struttura topologica dello spazio-tempo, è un argomento studiato principalmente nella relatività generale. Questa teoria fisica modella la gravitazione utilizzando una varietà lorentziana (uno spazio-tempo) e i concetti di topologia diventano perciò importanti nell'analisi degli aspetti sia locali che globali dello spazio-tempo. Lo studio della topologia dello spazio-tempo è importante specialmente in cosmologia fisica. (it) Topologia do espaço-tempo é a estrutura topológica do espaço-tempo, um tópico estudado principalmente na relatividade geral. Este modelos da teoria física da gravitação como uma variedade de Lorentz (um espaço-tempo) e os conceitos de topologia, assim, tornam-se importantes na análise local, bem como aspectos globais do espaço-tempo. O estudo da topologia do espaço-tempo é especialmente importante em cosmologia física. (pt) |
rdfs:label |
طوبولوجيا الزمكان (ar) Topologia dello spazio-tempo (it) Spacetime topology (en) Topologia do espaço-tempo (pt) |
owl:sameAs |
freebase:Spacetime topology wikidata:Spacetime topology dbpedia-ar:Spacetime topology dbpedia-fa:Spacetime topology dbpedia-it:Spacetime topology http://pa.dbpedia.org/resource/ਸਪੇਸਟਾਈਮ_ਟੌਪੌਲੌਜੀ dbpedia-pt:Spacetime topology https://global.dbpedia.org/id/3hVvM yago-res:Spacetime topology |
prov:wasDerivedFrom |
wikipedia-en:Spacetime_topology?oldid=1087547109&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Spacetime_topology |
is dbo:wikiPageRedirects of |
dbr:Universal_Topology_of_Physics dbr:Global_geometry dbr:Global_spacetime_structure dbr:Spacetime_Topology dbr:Spacetime_manifold |
is dbo:wikiPageWikiLink of |
dbr:Index_of_physics_articles_(S) dbr:General_relativity dbr:Friedmann–Lemaître–Robertson–Walker_metric dbr:Mathematics_of_general_relativity dbr:Topology dbr:Flop-transition dbr:Redshift dbr:Shape_of_the_universe dbr:World_manifold dbr:Universal_Topology_of_Physics dbr:Global_geometry dbr:Global_spacetime_structure dbr:Spacetime_Topology dbr:Spacetime_manifold |
is foaf:primaryTopic of |
wikipedia-en:Spacetime_topology |