Split Lie algebra (original) (raw)

About DBpedia

리 대수 이론에서, 분할 리 대수(分割Lie代數, 영어: split Lie algebra)는 특별한 형태의 카르탕 부분 대수를 갖춘 리 대수이다. 복소수체 위의 반단순 리 대수는 항상 분할 리 대수의 구조를 갖는다.

Property Value
dbo:abstract In the mathematical field of Lie theory, a split Lie algebra is a pair where is a Lie algebra and is a splitting Cartan subalgebra, where "splitting" means that for all , is triangularizable. If a Lie algebra admits a splitting, it is called a splittable Lie algebra. Note that for reductive Lie algebras, the Cartan subalgebra is required to contain the center. Over an algebraically closed field such as the complex numbers, all semisimple Lie algebras are splittable (indeed, not only does the Cartan subalgebra act by triangularizable matrices, but even stronger, it acts by diagonalizable ones) and all splittings are conjugate; thus split Lie algebras are of most interest for non-algebraically closed fields. Split Lie algebras are of interest both because they formalize the split real form of a complex Lie algebra, and because split semisimple Lie algebras (more generally, split reductive Lie algebras) over any field share many properties with semisimple Lie algebras over algebraically closed fields – having essentially the same representation theory, for instance – the splitting Cartan subalgebra playing the same role as the Cartan subalgebra plays over algebraically closed fields. This is the approach followed in, for instance. (en) 리 대수 이론에서, 분할 리 대수(分割Lie代數, 영어: split Lie algebra)는 특별한 형태의 카르탕 부분 대수를 갖춘 리 대수이다. 복소수체 위의 반단순 리 대수는 항상 분할 리 대수의 구조를 갖는다. (ko)
dbo:wikiPageExternalLink https://books.google.com/books%3Fid=l8nJCNiIQAAC&pg=PA157 https://books.google.com/books%3Fid=Yh1RHnYCDNsC&pg=PA69
dbo:wikiPageID 25264571 (xsd:integer)
dbo:wikiPageLength 5285 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1070647608 (xsd:integer)
dbo:wikiPageWikiLink dbr:Algebraic_group dbr:Algebraically_closed_field dbr:Lie_theory dbr:Complex_numbers dbr:Lie_algebra dbr:Compact_Lie_algebra dbc:Properties_of_Lie_algebras dbr:Split-complex_number dbr:Cartan_subalgebra dbr:Satake_diagram dbr:Semisimple_Lie_algebra dbr:Mathematical dbr:Triangularizable dbr:Split_orthogonal_group dbr:Split_real_form dbr:Real_form
dbp:wikiPageUsesTemplate dbt:Citation dbt:Harv dbt:Refbegin dbt:Refend dbt:Reflist dbt:See_also dbt:Lie_groups
dct:subject dbc:Properties_of_Lie_algebras
rdf:type owl:Thing yago:WikicatLieAlgebras yago:Abstraction100002137 yago:Algebra106012726 yago:Cognition100023271 yago:Content105809192 yago:Discipline105996646 yago:KnowledgeDomain105999266 yago:Mathematics106000644 yago:Possession100032613 yago:Property113244109 yago:PsychologicalFeature100023100 yago:PureMathematics106003682 yago:Relation100031921 yago:Science105999797 yago:WikicatPropertiesOfLieAlgebras
rdfs:comment 리 대수 이론에서, 분할 리 대수(分割Lie代數, 영어: split Lie algebra)는 특별한 형태의 카르탕 부분 대수를 갖춘 리 대수이다. 복소수체 위의 반단순 리 대수는 항상 분할 리 대수의 구조를 갖는다. (ko) In the mathematical field of Lie theory, a split Lie algebra is a pair where is a Lie algebra and is a splitting Cartan subalgebra, where "splitting" means that for all , is triangularizable. If a Lie algebra admits a splitting, it is called a splittable Lie algebra. Note that for reductive Lie algebras, the Cartan subalgebra is required to contain the center. (en)
rdfs:label 분할 리 대수 (ko) Split Lie algebra (en)
rdfs:seeAlso dbr:Real_form
owl:sameAs freebase:Split Lie algebra yago-res:Split Lie algebra wikidata:Split Lie algebra dbpedia-ko:Split Lie algebra https://global.dbpedia.org/id/4vSzu
prov:wasDerivedFrom wikipedia-en:Split_Lie_algebra?oldid=1070647608&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Split_Lie_algebra
is dbo:wikiPageRedirects of dbr:Splitting_Cartan_subalgebra dbr:Split_Lie_group
is dbo:wikiPageWikiLink of dbr:Lie_algebra dbr:Compact_Lie_algebra dbr:Symplectic_group dbr:Cartan_subalgebra dbr:Satake_diagram dbr:List_of_things_named_after_Sophus_Lie dbr:Semisimple_Lie_algebra dbr:Real_form_(Lie_theory) dbr:Splitting_Cartan_subalgebra dbr:Split_Lie_group
is rdfs:seeAlso of dbr:Simple_Lie_group dbr:Real_form_(Lie_theory)
is foaf:primaryTopic of wikipedia-en:Split_Lie_algebra