Volodin space (original) (raw)
In mathematics, more specifically in topology, the Volodin space of a ring R is a subspace of the classifying space given by where is the subgroup of upper triangular matrices with 1's on the diagonal (i.e., the unipotent radical of the standard Borel) and a permutation matrix thought of as an element in and acting (superscript) by conjugation. The space is acyclic and the fundamental group is the Steinberg group of R. In fact, showed that X yields a model for Quillen's plus-construction in algebraic K-theory.
Property | Value |
---|---|
dbo:abstract | In mathematics, more specifically in topology, the Volodin space of a ring R is a subspace of the classifying space given by where is the subgroup of upper triangular matrices with 1's on the diagonal (i.e., the unipotent radical of the standard Borel) and a permutation matrix thought of as an element in and acting (superscript) by conjugation. The space is acyclic and the fundamental group is the Steinberg group of R. In fact, showed that X yields a model for Quillen's plus-construction in algebraic K-theory. (en) Inom topologin, ett delområde av matematiken, är Volodinrummet av en ring R ett delrum av det som ges av där är delgruppen av uppåt triangulära matriser med ettor i diagonalen och en permutationsmatris sedd som ett element av som verkar med konjugation. Rummet är och fundamentalgruppen är Steinberggrupp av R. Faktiskt förklarade Suslins uppsats att X ger en modell för i algebraisk K-teori. (sv) |
dbo:wikiPageExternalLink | http://www.math.rutgers.edu/~weibel/Kbook.html |
dbo:wikiPageID | 42129530 (xsd:integer) |
dbo:wikiPageLength | 2628 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1111055713 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Algebraic_K-theory dbr:Permutation_matrix dbr:Cyclic_homology dbr:Mathematics dbr:General_linear_group dbr:Classifying_space dbr:Lie_algebra dbr:Fundamental_group dbr:Steinberg_group_(K-theory) dbr:Acyclic_space dbr:Topology dbc:Algebraic_topology dbc:Representable_functors dbr:Ring_(mathematics) dbc:Homotopy_theory dbc:Fiber_bundles dbr:Plus_construction dbr:Triangular_matrix dbr:Trace_method |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Cite_web dbt:Harvtxt dbt:Orphan dbt:Reflist dbt:Topology-stub |
dcterms:subject | dbc:Algebraic_topology dbc:Representable_functors dbc:Homotopy_theory dbc:Fiber_bundles |
rdf:type | yago:AnimalTissue105267548 yago:BodyPart105220461 yago:FiberBundle105475681 yago:NervousTissue105296775 yago:Part109385911 yago:PhysicalEntity100001930 yago:Thing100002452 yago:Tissue105267345 yago:WikicatFiberBundles |
rdfs:comment | In mathematics, more specifically in topology, the Volodin space of a ring R is a subspace of the classifying space given by where is the subgroup of upper triangular matrices with 1's on the diagonal (i.e., the unipotent radical of the standard Borel) and a permutation matrix thought of as an element in and acting (superscript) by conjugation. The space is acyclic and the fundamental group is the Steinberg group of R. In fact, showed that X yields a model for Quillen's plus-construction in algebraic K-theory. (en) Inom topologin, ett delområde av matematiken, är Volodinrummet av en ring R ett delrum av det som ges av där är delgruppen av uppåt triangulära matriser med ettor i diagonalen och en permutationsmatris sedd som ett element av som verkar med konjugation. Rummet är och fundamentalgruppen är Steinberggrupp av R. Faktiskt förklarade Suslins uppsats att X ger en modell för i algebraisk K-teori. (sv) |
rdfs:label | Volodin space (en) Volodinrum (sv) |
owl:sameAs | freebase:Volodin space yago-res:Volodin space wikidata:Volodin space dbpedia-sv:Volodin space https://global.dbpedia.org/id/fcTh |
prov:wasDerivedFrom | wikipedia-en:Volodin_space?oldid=1111055713&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Volodin_space |
is dbo:wikiPageWikiLink of | dbr:Steinberg_group_(K-theory) dbr:K-theory_of_a_category |
is foaf:primaryTopic of | wikipedia-en:Volodin_space |