Classifying space (original) (raw)
In der Mathematik werden mit Hilfe des klassifizierenden Raumes und des universellen Bündels einer topologischen Gruppe G die Prinzipalbündel mit G als Strukturgruppe klassifiziert. Der klassifizierende Raum und das universelle Bündel sind durch eine universelle Eigenschaft charakterisiert, eine explizite Konstruktion geht auf John Milnor zurück. Bündel und ihre Klassifikation spielen eine wichtige Rolle in Mathematik und Theoretischer Physik.
Property | Value |
---|---|
dbo:abstract | In der Mathematik werden mit Hilfe des klassifizierenden Raumes und des universellen Bündels einer topologischen Gruppe G die Prinzipalbündel mit G als Strukturgruppe klassifiziert. Der klassifizierende Raum und das universelle Bündel sind durch eine universelle Eigenschaft charakterisiert, eine explizite Konstruktion geht auf John Milnor zurück. Bündel und ihre Klassifikation spielen eine wichtige Rolle in Mathematik und Theoretischer Physik. (de) In mathematics, specifically in homotopy theory, a classifying space BG of a topological group G is the quotient of a weakly contractible space EG (i.e. a topological space all of whose homotopy groups are trivial) by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle EG → BG. As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy. For a discrete group G, BG is, roughly speaking, a path-connected topological space X such that the fundamental group of X is isomorphic to G and the higher homotopy groups of X are trivial, that is, BG is an Eilenberg–MacLane space, or a K(G,1). (en) En mathématiques, un espace classifiant pour un groupe topologique G est la base d’un fibré principal particulier EG → BG appelé fibré universel, induisant tous les fibrés ayant ce groupe de structure sur n’importe quel CW-complexe X par image réciproque (pullback). Dans le cas d’un groupe discret, la définition d’espace classifiant correspond à celle d’un espace d'Eilenberg-MacLane K(G, 1), c’est-à-dire un espace connexe par arcs dont tous les groupes d'homotopie sont triviaux en dehors du groupe fondamental (lequel est isomorphe à G). La notion s’étend avec celle d’espace classifiant d’une catégorie, qui est une réalisation géométrique de son nerf. * Portail des mathématiques (fr) 数学、特にホモトピー論では、位相群 G の分類空間(classifying space) BG は、G のにより空間 EG の商空間である(つまり、すべてのホモトピー群が自明となるような位相空間)。分類空間は、パラコンパクトな多様体上の任意の G 主バンドルが、主バンドル EG → BG の(pullback bundle)と同型となる性質を持つ。 離散群(discrete group) G に対し、BG は、大まかには、弧状連結な位相空間 X であり、X の基本群が G と同型となり、X の高次ホモトピー群が自明となる、つまり、BG は(Eilenberg-Maclane space)、または K(G,1) となる。 (ja) 대수적 위상수학에서 분류 공간(分流空間, 영어: classifying space)는 어떤 위상군을 올로 하는 모든 주다발들을 호모토피류들로 나타낼 수 있는 올다발이다. (ko) Em matemática, especificamente em teoria da homotopia, um espaço de classificação BG de um grupo topológico G é o quociente de um espaço EG (i.e. um espaço topológico para o qual todos seus são triviais) por uma de G. Tem a propriedade que qualquer fibrado principal G sobre uma variedade paracompacta ser isomórfica a uma do fibrado principal Para um G, BG é, grosseiramente falando, um espaço topológico de caminho ligado X tal que o grupo fundamental de X é isomórfico a G e os mais altos grupos de homotopia de X são . (pt) |
dbo:wikiPageID | 923556 (xsd:integer) |
dbo:wikiPageLength | 12422 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1111031167 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Projective_space dbr:CAT(0)_space dbr:Borel's_theorem dbr:Braid_group dbr:Algebraic_topology dbr:Homotopy_equivalence dbr:Homotopy_groups dbr:Characteristic_class dbr:Cubical_complex dbr:Universal_bundle dbr:Intuitionistic_logic dbr:Lie_group dbr:Trivial_group dbr:Compact_space dbr:Continuous_mapping dbr:Contractible dbr:Mathematics dbr:Genus_(mathematics) dbr:Sierpiński_space dbr:Pullback_bundle dbr:Circle dbr:Grassmannian dbr:Bott_periodicity_theorem dbr:Configuration_space_(mathematics) dbr:Connected_space dbr:Equivariant_cohomology dbr:Closed_manifold dbr:Delta_set dbr:Functor dbr:Fundamental_group dbr:Surface_(topology) dbr:Category_of_sets dbr:Topological_group dbr:Torus dbr:Helix dbc:Algebraic_topology dbr:Cyclic_group dbr:Fiber_bundle dbr:Foliation dbr:Brown's_representability_theorem dbc:Representable_functors dbr:Discrete_group dbr:Free_action dbr:Simplicial_complex dbr:Quotient_space_(topology) dbc:Homotopy_theory dbr:Group_action_(mathematics) dbr:Group_cohomology dbr:Hilbert_space dbr:Hyperbolic_manifold dbc:Fiber_bundles dbr:Eilenberg–MacLane_space dbr:Homological_algebra dbr:Homotopy_category dbr:Homotopy_group dbr:Homotopy_theory dbr:Differential_geometry dbr:CW_complex dbr:Classifying_space_for_O(n) dbr:Classifying_space_for_U(n) dbr:Classifying_topos dbr:Free_abelian_group dbr:Free_group dbr:Contravariant_functor dbr:Paracompact dbr:Infinite_cyclic_group dbr:Orthogonal_group dbr:Real_projective_space dbr:Unitary_group dbr:Principal_bundle dbr:Existence_theorem dbr:Universal_property dbr:Weak_equivalence_(homotopy_theory) dbr:Real_line dbr:Topological_space dbr:Representable_functor dbr:Chern–Weil_theory dbr:Stiefel_manifold dbr:Weakly_contractible dbr:Universal_cover dbr:Bar_construction dbr:Classifying_stack dbr:Pullback_of_a_bundle dbr:Cohomology_group dbr:Cobordism_theory dbr:Thom_complex dbr:H._Cartan's_theorem |
dbp:id | C/c022440 (en) classifying+space (en) |
dbp:title | Classifying space (en) |
dbp:wikiPageUsesTemplate | dbt:Springer dbt:Cite_book dbt:Clarify dbt:Math dbt:Nlab dbt:Short_description dbt:GBurl |
dct:subject | dbc:Algebraic_topology dbc:Representable_functors dbc:Homotopy_theory dbc:Fiber_bundles |
gold:hypernym | dbr:Quotient |
rdf:type | yago:AnimalTissue105267548 yago:BodyPart105220461 yago:FiberBundle105475681 yago:NervousTissue105296775 yago:Part109385911 yago:PhysicalEntity100001930 yago:Thing100002452 yago:Tissue105267345 yago:WikicatFiberBundles |
rdfs:comment | In der Mathematik werden mit Hilfe des klassifizierenden Raumes und des universellen Bündels einer topologischen Gruppe G die Prinzipalbündel mit G als Strukturgruppe klassifiziert. Der klassifizierende Raum und das universelle Bündel sind durch eine universelle Eigenschaft charakterisiert, eine explizite Konstruktion geht auf John Milnor zurück. Bündel und ihre Klassifikation spielen eine wichtige Rolle in Mathematik und Theoretischer Physik. (de) 数学、特にホモトピー論では、位相群 G の分類空間(classifying space) BG は、G のにより空間 EG の商空間である(つまり、すべてのホモトピー群が自明となるような位相空間)。分類空間は、パラコンパクトな多様体上の任意の G 主バンドルが、主バンドル EG → BG の(pullback bundle)と同型となる性質を持つ。 離散群(discrete group) G に対し、BG は、大まかには、弧状連結な位相空間 X であり、X の基本群が G と同型となり、X の高次ホモトピー群が自明となる、つまり、BG は(Eilenberg-Maclane space)、または K(G,1) となる。 (ja) 대수적 위상수학에서 분류 공간(分流空間, 영어: classifying space)는 어떤 위상군을 올로 하는 모든 주다발들을 호모토피류들로 나타낼 수 있는 올다발이다. (ko) Em matemática, especificamente em teoria da homotopia, um espaço de classificação BG de um grupo topológico G é o quociente de um espaço EG (i.e. um espaço topológico para o qual todos seus são triviais) por uma de G. Tem a propriedade que qualquer fibrado principal G sobre uma variedade paracompacta ser isomórfica a uma do fibrado principal Para um G, BG é, grosseiramente falando, um espaço topológico de caminho ligado X tal que o grupo fundamental de X é isomórfico a G e os mais altos grupos de homotopia de X são . (pt) In mathematics, specifically in homotopy theory, a classifying space BG of a topological group G is the quotient of a weakly contractible space EG (i.e. a topological space all of whose homotopy groups are trivial) by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle EG → BG. As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly use (en) En mathématiques, un espace classifiant pour un groupe topologique G est la base d’un fibré principal particulier EG → BG appelé fibré universel, induisant tous les fibrés ayant ce groupe de structure sur n’importe quel CW-complexe X par image réciproque (pullback). Dans le cas d’un groupe discret, la définition d’espace classifiant correspond à celle d’un espace d'Eilenberg-MacLane K(G, 1), c’est-à-dire un espace connexe par arcs dont tous les groupes d'homotopie sont triviaux en dehors du groupe fondamental (lequel est isomorphe à G). * Portail des mathématiques (fr) |
rdfs:label | Classifying space (en) Klassifizierender Raum (de) Espace classifiant (fr) 분류 공간 (ko) 分類空間 (ja) Espaço de classificação (pt) |
owl:sameAs | freebase:Classifying space yago-res:Classifying space wikidata:Classifying space dbpedia-de:Classifying space dbpedia-fr:Classifying space dbpedia-ja:Classifying space dbpedia-ko:Classifying space dbpedia-pt:Classifying space https://global.dbpedia.org/id/4hfKj |
prov:wasDerivedFrom | wikipedia-en:Classifying_space?oldid=1111031167&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Classifying_space |
is dbo:wikiPageWikiLink of | dbr:BPL dbr:List_of_algebraic_topology_topics dbr:Principal_homogeneous_space dbr:Projective_unitary_group dbr:Barratt–Priddy_theorem dbr:Borel's_theorem dbr:Braid_group dbr:Dennis_Sullivan dbr:Algebraic_K-theory dbr:Homotopy_groups_of_spheres dbr:John_R._Stallings dbr:Characteristic_class dbr:Universal_bundle dbr:Infinite_loop_space_machine dbr:Stiefel–Whitney_class dbr:Timeline_of_category_theory_and_related_mathematics dbr:Crossed_module dbr:Chern–Weil_homomorphism dbr:Generalized_flag_variety dbr:Nerve_(category_theory) dbr:Novikov_conjecture dbr:Twisted_K-theory dbr:Volodin_space dbr:Sierpiński_space dbr:Quaternionic_projective_space dbr:Quotient_stack dbr:Quillen's_theorems_A_and_B dbr:Timeline_of_bordism dbr:Timeline_of_manifolds dbr:Glossary_of_algebraic_geometry dbr:Glossary_of_algebraic_topology dbr:Grassmannian dbr:Bott_periodicity_theorem dbr:Morita_equivalence dbr:Configuration_space_(mathematics) dbr:Equivariant_cohomology dbr:Baum–Connes_conjecture dbr:Complex_cobordism dbr:Complex_projective_space dbr:Deligne_cohomology dbr:Functor_represented_by_a_scheme dbr:Kuiper's_theorem dbr:Projective_orthogonal_group dbr:Spectrum_(topology) dbr:Steinberg_group_(K-theory) dbr:String_group dbr:Symmetric_product_(topology) dbr:Acyclic_space dbr:Topological_group dbr:G-structure_on_a_manifold dbr:Line_bundle dbr:Center_(category_theory) dbr:Differentiable_stack dbr:Farrell–Jones_conjecture dbr:Goro_Nishida dbr:Kan-Thurston_theorem dbr:Kan_fibration dbr:Postnikov_system dbr:Group_(mathematics) dbr:Group_cohomology dbr:Gunnar_Carlsson dbr:Atiyah–Segal_completion_theorem dbr:Atiyah–Singer_index_theorem dbr:Armand_Borel dbr:Abstract_nonsense dbr:Chern_class dbr:Karen_Vogtmann dbr:Cobordism dbr:Eilenberg–MacLane_space dbr:Eilenberg–Zilber_theorem dbr:Homotopy_theory dbr:Tautological_bundle dbr:Transfer_(group_theory) dbr:Aspherical_space dbr:Classifying_space_for_O(n) dbr:Classifying_space_for_U(n) dbr:Classifying_topos dbr:Group_theory dbr:Michael_Atiyah dbr:Occurrences_of_Grandi's_series dbr:Orbifold dbr:Unitary_group dbr:Vector_bundle dbr:Euler_class dbr:E∞-operad dbr:Plus_construction dbr:Sullivan_conjecture dbr:Finiteness_properties_of_groups dbr:Small_cancellation_theory dbr:Segal's_conjecture dbr:Simplicial_set dbr:Stable_normal_bundle |
is foaf:primaryTopic of | wikipedia-en:Classifying_space |