Stably finite ring (original) (raw)
In mathematics, particularly in abstract algebra, a ring R is said to be stably finite (or weakly finite) if, for all square matrices A and B of the same size with entries in R, AB = 1 implies BA = 1. This is a stronger property for a ring than having the invariant basis number (IBN) property. Namely, any nontrivial stably finite ring has IBN. Commutative rings, noetherian rings and artinian rings are stably finite. Subrings of stably finite rings and matrix rings over stably finite rings are stably finite. A ring satisfying is stably finite.
Property | Value |
---|---|
dbo:abstract | In mathematics, particularly in abstract algebra, a ring R is said to be stably finite (or weakly finite) if, for all square matrices A and B of the same size with entries in R, AB = 1 implies BA = 1. This is a stronger property for a ring than having the invariant basis number (IBN) property. Namely, any nontrivial stably finite ring has IBN. Commutative rings, noetherian rings and artinian rings are stably finite. Subrings of stably finite rings and matrix rings over stably finite rings are stably finite. A ring satisfying is stably finite. (en) Inom matematiken är en ring stabilt ändlig (eller svagt ändlig) om för alla kvadratiska matriser A, B av samma storlek över R implicerar AB = 1 att BA = 1. (sv) |
dbo:wikiPageID | 26021350 (xsd:integer) |
dbo:wikiPageLength | 952 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1071294959 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Invariant_basis_number dbc:Ring_theory dbr:Mathematics dbr:Noetherian_ring dbr:Subring dbr:Commutative_ring dbr:Matrix_ring dbr:Ring_(mathematics) dbr:Abstract_algebra dbr:Artinian_ring dbr:Square_matrices dbr:Trivial_ring dbr:Klein's_nilpotence_condition |
dbp:wikiPageUsesTemplate | dbt:Citation_needed dbt:Reflist dbt:Abstract-algebra-stub |
dct:subject | dbc:Ring_theory |
rdfs:comment | In mathematics, particularly in abstract algebra, a ring R is said to be stably finite (or weakly finite) if, for all square matrices A and B of the same size with entries in R, AB = 1 implies BA = 1. This is a stronger property for a ring than having the invariant basis number (IBN) property. Namely, any nontrivial stably finite ring has IBN. Commutative rings, noetherian rings and artinian rings are stably finite. Subrings of stably finite rings and matrix rings over stably finite rings are stably finite. A ring satisfying is stably finite. (en) Inom matematiken är en ring stabilt ändlig (eller svagt ändlig) om för alla kvadratiska matriser A, B av samma storlek över R implicerar AB = 1 att BA = 1. (sv) |
rdfs:label | Stably finite ring (en) Stabilt ändlig ring (sv) |
owl:sameAs | freebase:Stably finite ring wikidata:Stably finite ring dbpedia-he:Stably finite ring dbpedia-sv:Stably finite ring https://global.dbpedia.org/id/4vr7C |
prov:wasDerivedFrom | wikipedia-en:Stably_finite_ring?oldid=1071294959&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Stably_finite_ring |
is dbo:wikiPageRedirects of | dbr:Stably_finite dbr:Weakly_finite dbr:Weakly_finite_ring |
is dbo:wikiPageWikiLink of | dbr:Invariant_basis_number dbr:Matrix_ring dbr:Stably_finite dbr:Weakly_finite dbr:Weakly_finite_ring |
is foaf:primaryTopic of | wikipedia-en:Stably_finite_ring |