Stably finite ring (original) (raw)

About DBpedia

In mathematics, particularly in abstract algebra, a ring R is said to be stably finite (or weakly finite) if, for all square matrices A and B of the same size with entries in R, AB = 1 implies BA = 1. This is a stronger property for a ring than having the invariant basis number (IBN) property. Namely, any nontrivial stably finite ring has IBN. Commutative rings, noetherian rings and artinian rings are stably finite. Subrings of stably finite rings and matrix rings over stably finite rings are stably finite. A ring satisfying is stably finite.

Property Value
dbo:abstract In mathematics, particularly in abstract algebra, a ring R is said to be stably finite (or weakly finite) if, for all square matrices A and B of the same size with entries in R, AB = 1 implies BA = 1. This is a stronger property for a ring than having the invariant basis number (IBN) property. Namely, any nontrivial stably finite ring has IBN. Commutative rings, noetherian rings and artinian rings are stably finite. Subrings of stably finite rings and matrix rings over stably finite rings are stably finite. A ring satisfying is stably finite. (en) Inom matematiken är en ring stabilt ändlig (eller svagt ändlig) om för alla kvadratiska matriser A, B av samma storlek över R implicerar AB = 1 att BA = 1. (sv)
dbo:wikiPageID 26021350 (xsd:integer)
dbo:wikiPageLength 952 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1071294959 (xsd:integer)
dbo:wikiPageWikiLink dbr:Invariant_basis_number dbc:Ring_theory dbr:Mathematics dbr:Noetherian_ring dbr:Subring dbr:Commutative_ring dbr:Matrix_ring dbr:Ring_(mathematics) dbr:Abstract_algebra dbr:Artinian_ring dbr:Square_matrices dbr:Trivial_ring dbr:Klein's_nilpotence_condition
dbp:wikiPageUsesTemplate dbt:Citation_needed dbt:Reflist dbt:Abstract-algebra-stub
dct:subject dbc:Ring_theory
rdfs:comment In mathematics, particularly in abstract algebra, a ring R is said to be stably finite (or weakly finite) if, for all square matrices A and B of the same size with entries in R, AB = 1 implies BA = 1. This is a stronger property for a ring than having the invariant basis number (IBN) property. Namely, any nontrivial stably finite ring has IBN. Commutative rings, noetherian rings and artinian rings are stably finite. Subrings of stably finite rings and matrix rings over stably finite rings are stably finite. A ring satisfying is stably finite. (en) Inom matematiken är en ring stabilt ändlig (eller svagt ändlig) om för alla kvadratiska matriser A, B av samma storlek över R implicerar AB = 1 att BA = 1. (sv)
rdfs:label Stably finite ring (en) Stabilt ändlig ring (sv)
owl:sameAs freebase:Stably finite ring wikidata:Stably finite ring dbpedia-he:Stably finite ring dbpedia-sv:Stably finite ring https://global.dbpedia.org/id/4vr7C
prov:wasDerivedFrom wikipedia-en:Stably_finite_ring?oldid=1071294959&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Stably_finite_ring
is dbo:wikiPageRedirects of dbr:Stably_finite dbr:Weakly_finite dbr:Weakly_finite_ring
is dbo:wikiPageWikiLink of dbr:Invariant_basis_number dbr:Matrix_ring dbr:Stably_finite dbr:Weakly_finite dbr:Weakly_finite_ring
is foaf:primaryTopic of wikipedia-en:Stably_finite_ring