Weyl's theorem on complete reducibility (original) (raw)

Property Value
dbo:abstract Der Satz von Weyl, benannt nach Hermann Weyl, ist ein wichtiger Satz aus der Theorie der Lie-Algebren. Er besagt im Wesentlichen, dass man endlichdimensionale Darstellungen halbeinfacher Lie-Algebren aus irreduziblen zusammensetzen kann, sofern der Grundkörper algebraisch abgeschlossen ist und die Charakteristik 0 hat. (de) In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module (i.e., a direct sum of simple modules.) (en)
dbo:wikiPageExternalLink http://amathew.wordpress.com/2010/01/31/weyls-theorem-on-complete-reducibility/ https://archive.org/details/introductiontoli00jame https://books.google.com/books%3Fid=kuEjSb9teJwC&q=Victor%20G.%20Kac&pg=PP1
dbo:wikiPageID 39330817 (xsd:integer)
dbo:wikiPageLength 14711 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 996755843 (xsd:integer)
dbo:wikiPageWikiLink dbr:Cambridge_University_Press dbr:Borel_subalgebra dbr:Lie's_theorem dbr:Lie_algebra_representation dbr:Lie_group–Lie_algebra_correspondence dbr:Whitehead's_lemma_(Lie_algebra) dbc:Lie_algebras dbr:Maximal_submodule dbr:Jordan–Chevalley_decomposition dbr:Universal_enveloping_algebra dbr:Homological_algebra dbr:Nathan_Jacobson dbr:Casimir_element dbr:Semisimple_ring dbr:Schur's_lemma dbr:Verma_module dbr:Unitarian_trick dbr:Semisimple_representation dbr:Representation_theory_of_semisimple_Lie_algebras dbr:Enveloping_algebra_of_a_representation dbr:Derivation_(algebra) dbr:Chevalley_generators
dbp:mathStatement Let be a semisimple finite-dimensional Lie algebra over a field of characteristic zero. # There exists a unique pair of elements in such that , is semisimple, is nilpotent and . # If is a finite-dimensional representation, then and , where denote the Jordan decomposition of the semisimple and nilpotent parts of the endomorphism . In short, the semisimple and nilpotent parts of an element of are well-defined and are determined independent of a faithful finite-dimensional representation. (en)
dbp:name Proposition (en)
dbp:wikiPageUsesTemplate dbt:Citation dbt:Cite_book dbt:Clarify dbt:ISBN dbt:Reflist dbt:Math_theorem
dcterms:subject dbc:Lie_algebras
rdf:type yago:WikicatLieAlgebras yago:Abstraction100002137 yago:Algebra106012726 yago:Cognition100023271 yago:Content105809192 yago:Discipline105996646 yago:KnowledgeDomain105999266 yago:Mathematics106000644 yago:PsychologicalFeature100023100 yago:PureMathematics106003682 yago:Science105999797
rdfs:comment Der Satz von Weyl, benannt nach Hermann Weyl, ist ein wichtiger Satz aus der Theorie der Lie-Algebren. Er besagt im Wesentlichen, dass man endlichdimensionale Darstellungen halbeinfacher Lie-Algebren aus irreduziblen zusammensetzen kann, sofern der Grundkörper algebraisch abgeschlossen ist und die Charakteristik 0 hat. (de) In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module (i.e., a direct sum of simple modules.) (en)
rdfs:label Satz von Weyl (Lie-Algebra) (de) Weyl's theorem on complete reducibility (en)
owl:sameAs freebase:Weyl's theorem on complete reducibility yago-res:Weyl's theorem on complete reducibility wikidata:Weyl's theorem on complete reducibility dbpedia-de:Weyl's theorem on complete reducibility https://global.dbpedia.org/id/fmS3
prov:wasDerivedFrom wikipedia-en:Weyl's_theorem_on_complete_reducibility?oldid=996755843&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Weyl's_theorem_on_complete_reducibility
is dbo:wikiPageDisambiguates of dbr:Weyl's_theorem
is dbo:wikiPageRedirects of dbr:Weyl's_complete_reducibility_theorem dbr:Weyl's_completely_reducibility_theorem
is dbo:wikiPageWikiLink of dbr:Representation_theory dbr:Semi-simplicity dbr:Representation_of_a_Lie_group dbr:Lie_algebra_cohomology dbr:Lie_algebra_representation dbr:Whitehead's_lemma_(Lie_algebra) dbr:Lie_algebra dbr:Haboush's_theorem dbr:Weyl's_theorem dbr:Casimir_element dbr:List_of_things_named_after_Hermann_Weyl dbr:Semisimple_Lie_algebra dbr:Semisimple_representation dbr:Representation_theory_of_semisimple_Lie_algebras dbr:Weyl's_complete_reducibility_theorem dbr:Weyl's_completely_reducibility_theorem
is foaf:primaryTopic of wikipedia-en:Weyl's_theorem_on_complete_reducibility