Zero-symmetric graph (original) (raw)

Property Value
dbo:abstract En théorie des graphes, un graphe zéro-symétrique est un graphe cubique tel que pour tout couple de sommets, il existe un unique automorphisme envoyant le premier sur le second. On parle également de représentation graphique régulière cubique (GRR, pour Graphical Regular Representation) d'un groupe G lorsque le groupe des automorphismes du graphe zéro-symétrique est isomorphe à G. (fr) In the mathematical field of graph theory, a zero-symmetric graph is a connected graph in which each vertex has exactly three incident edges and, for each two vertices, there is a unique symmetry taking one vertex to the other. Such a graph is a vertex-transitive graph but cannot be an edge-transitive graph: the number of symmetries equals the number of vertices, too few to take every edge to every other edge. The name for this class of graphs was coined by R. M. Foster in a 1966 letter to H. S. M. Coxeter. In the context of group theory, zero-symmetric graphs are also called graphical regular representations of their symmetry groups. (en)
dbo:thumbnail wiki-commons:Special:FilePath/18-vertex_zero-symmetric_graph.svg?width=300
dbo:wikiPageID 44969299 (xsd:integer)
dbo:wikiPageLength 5152 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1025824768 (xsd:integer)
dbo:wikiPageWikiLink dbc:Graph_families dbr:Vertex-transitive_graph dbc:Regular_graphs dbr:Connected_graph dbr:Mathematics dbc:Algebraic_graph_theory dbr:Truncated_cuboctahedron dbr:R._M._Foster dbr:Edge-transitive_graph dbr:Cayley_graph dbr:Graph_automorphism dbr:Graph_theory dbr:Harold_Scott_MacDonald_Coxeter dbr:LCF_notation dbr:Bipartite_graph dbr:Planar_graph dbr:Group_theory dbr:Lovász_conjecture dbr:Semi-symmetric_graph dbr:Hamiltonian_cycle dbr:Combinatorial_enumeration dbr:Truncated_cuboctahedral_graph dbr:Truncated_icosidodecahedral_graph dbr:File:Two-edge-orbit_GRR.svg
dbp:align right (en)
dbp:alt 18 (xsd:integer) Truncated cuboctahedron (en)
dbp:caption The truncated cuboctahedron, a zero-symmetric polyhedron (en) The smallest zero-symmetric graph, with 18 vertices and 27 edges (en)
dbp:direction horizontal (en)
dbp:image 18 (xsd:integer) Great rhombicuboctahedron.png (en)
dbp:width 200 (xsd:integer)
dbp:wikiPageUsesTemplate dbt:Multiple_image dbt:Reflist dbt:Unsolved dbt:Graph_families_defined_by_their_automorphisms
dct:subject dbc:Graph_families dbc:Regular_graphs dbc:Algebraic_graph_theory
rdfs:comment En théorie des graphes, un graphe zéro-symétrique est un graphe cubique tel que pour tout couple de sommets, il existe un unique automorphisme envoyant le premier sur le second. On parle également de représentation graphique régulière cubique (GRR, pour Graphical Regular Representation) d'un groupe G lorsque le groupe des automorphismes du graphe zéro-symétrique est isomorphe à G. (fr) In the mathematical field of graph theory, a zero-symmetric graph is a connected graph in which each vertex has exactly three incident edges and, for each two vertices, there is a unique symmetry taking one vertex to the other. Such a graph is a vertex-transitive graph but cannot be an edge-transitive graph: the number of symmetries equals the number of vertices, too few to take every edge to every other edge. (en)
rdfs:label Graphe zéro-symétrique (fr) Zero-symmetric graph (en)
owl:sameAs freebase:Zero-symmetric graph yago-res:Zero-symmetric graph wikidata:Zero-symmetric graph dbpedia-fr:Zero-symmetric graph dbpedia-hu:Zero-symmetric graph https://global.dbpedia.org/id/2Nf7v
prov:wasDerivedFrom wikipedia-en:Zero-symmetric_graph?oldid=1025824768&ns=0
foaf:depiction wiki-commons:Special:FilePath/Great_rhombicuboctahedron.png wiki-commons:Special:FilePath/18-vertex_zero-symmetric_graph.svg wiki-commons:Special:FilePath/Two-edge-orbit_GRR.svg
foaf:isPrimaryTopicOf wikipedia-en:Zero-symmetric_graph
is dbo:wikiPageWikiLink of dbr:Robert_Frucht dbr:Vertex-transitive_graph dbr:Truncated_cube dbr:Truncated_dodecahedron dbr:Truncated_icosahedron dbr:Truncated_icosidodecahedron dbr:Truncated_octahedron dbr:Truncated_cuboctahedron dbr:LCF_notation
is dbp:properties of dbr:Truncated_cube dbr:Truncated_dodecahedron dbr:Truncated_icosahedron dbr:Truncated_icosidodecahedron dbr:Truncated_octahedron dbr:Truncated_cuboctahedron
is foaf:primaryTopic of wikipedia-en:Zero-symmetric_graph