The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease (original) (raw)
Bartel DP . Micrornas: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297. CASPubMed Google Scholar
Ambros V . A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 1989; 57: 49–57. CASPubMed Google Scholar
Ruvkun G, Giusto J . The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 1989; 338: 313–319. CASPubMed Google Scholar
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. The 21-nucleotide let-7 rna regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901–906. CASPubMed Google Scholar
Chang S, Johnston RJ Jr, Frokjaer-Jensen C, Lockery S, Hobert O . Micrornas act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 2004; 430: 785–789. CASPubMed Google Scholar
Johnston RJ, Hobert O . A microrna controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 2003; 426: 845–849. CASPubMed Google Scholar
Brennecke J, Cohen SM . Towards a complete description of the microrna complement of animal genomes. Genome Biol 2003; 4: 228. PubMedPubMed Central Google Scholar
Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al. Identification and characterization of a novel gene, c13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 2004; 64: 3087–3095. CASPubMed Google Scholar
Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C, Meijerink WJ et al. Mir-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer 2009; 101: 707–714. CASPubMedPubMed Central Google Scholar
Concepcion CP, Bonetti C, Ventura A . The microrna-17-92 family of microrna clusters in development and disease. Cancer J 2012; 18: 262–267. CASPubMedPubMed Central Google Scholar
He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microrna polycistron as a potential human oncogene. Nature 2005; 435: 828–833. CASPubMedPubMed Central Google Scholar
Houbaviy HB, Murray MF, Sharp PA . Embryonic stem cell-specific micrornas. Developmental Cell 2003; 5: 351–358. CASPubMed Google Scholar
Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ et al. Targeted deletion reveals essential and overlapping functions of the mir-17 through 92 family of mirna clusters. Cell 2008; 132: 875–886. CASPubMedPubMed Central Google Scholar
Barski A, Jothi R, Cuddapah S, Cui K, Roh TY, Schones DE et al. Chromatin poises mirna- and protein-coding genes for expression. Genome Res 2009; 19: 1742–1751. CASPubMedPubMed Central Google Scholar
O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . C-myc-regulated micrornas modulate e2f1 expression. Nature 2005; 435: 839–843. CASPubMed Google Scholar
Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC et al. Mycn regulates oncogenic micrornas in neuroblastoma. Int J Cancer 2008; 122: 699–704. CASPubMed Google Scholar
Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F et al. An e2f/mir-20a autoregulatory feedback loop. The Journal of biological chemistry 2007; 282: 2135–2143. CASPubMed Google Scholar
Woods K, Thomson JM, Hammond SM . Direct regulation of an oncogenic micro-rna cluster by e2f transcription factors. J Biol Chem 2007; 282: 2130–2134. CASPubMed Google Scholar
Loven J, Zinin N, Wahlstrom T, Muller I, Brodin P, Fredlund E et al. Mycn-regulated micrornas repress estrogen receptor-alpha (esr1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci USA 2010; 107: 1553–1558. CASPubMedPubMed Central Google Scholar
de Pontual L, Yao E, Callier P, Faivre L, Drouin V, Cariou S et al. Germline deletion of the mir-17 approximately 92 cluster causes skeletal and growth defects in humans. Nature Genet 2011; 43: 1026–1030. CASPubMed Google Scholar
van Bokhoven H, Celli J, van Reeuwijk J, Rinne T, Glaudemans B, van Beusekom E et al. Mycn haploinsufficiency is associated with reduced brain size and intestinal atresias in feingold syndrome. Nature Genet 2005; 37: 465–467. CASPubMed Google Scholar
Marcelis CL, Hol FA, Graham GE, Rieu PN, Kellermayer R, Meijer RP et al. Genotype-phenotype correlations in mycn-related feingold syndrome. Hum Mut 2008; 29: 1125–1132. CASPubMed Google Scholar
Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C et al. Architecture of the human regulatory network derived from encode data. Nature 2012; 489: 91–100. CASPubMedPubMed Central Google Scholar
Ji M, Rao E, Ramachandrareddy H, Shen Y, Jiang C, Chen J et al. The mir-17-92 microrna cluster is regulated by multiple mechanisms in b-cell malignancies. Am J Pathol 2011; 179: 1645–1656. CASPubMedPubMed Central Google Scholar
Kim K, Chadalapaka G, Lee SO, Yamada D, Sastre-Garau X, Defossez PA et al. Identification of oncogenic microrna-17-92/zbtb4/specificity protein axis in breast cancer. Oncogene 2012; 31: 1034–1044. CASPubMed Google Scholar
Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C et al. Dicer ablation affects antibody diversity and cell survival in the b lymphocyte lineage. Cell 2008; 132: 860–874. CASPubMed Google Scholar
Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG et al. Chromatin structure analyses identify mirna promoters. Genes Dev 2008; 22: 3172–3183. CASPubMedPubMed Central Google Scholar
Muller H, Helin K . The e2f transcription factors: Key regulators of cell proliferation. Biochim Biophys Acta 2000; 1470: M1–12. CASPubMed Google Scholar
Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF et al. Repression of the mir-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 2009; 28: 2719–2732. CASPubMedPubMed Central Google Scholar
Suh SS, Yoo JY, Nuovo GJ, Jeon YJ, Kim S, Lee TJ et al. Micrornas/tp53 feedback circuitry in glioblastoma multiforme. Proc Natl Acad Sci USA 2012; 109: 5316–5321. CASPubMedPubMed Central Google Scholar
Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY et al. Human embryonic stem cells express a unique set of micrornas. Dev Biol 2004; 270: 488–498. CASPubMed Google Scholar
Thomson JM, Parker J, Perou CM, Hammond SM . A custom microarray platform for analysis of microrna gene expression. Nature Met 2004; 1: 47–53. CAS Google Scholar
Datto MB, Yu Y, Wang XF . Functional analysis of the transforming growth factor beta responsive elements in the waf1/cip1/p21 promoter. J Biol Chem 1995; 270: 28623–28628. CASPubMed Google Scholar
Ohgushi M, Kuroki S, Fukamachi H, O'Reilly LA, Kuida K, Strasser A et al. Transforming growth factor beta-dependent sequential activation of smad, bim, and caspase-9 mediates physiological apoptosis in gastric epithelial cells. Mol Cell Biol 2005; 25: 10017–10028. CASPubMedPubMed Central Google Scholar
Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY et al. The myc-mir-17∼92 axis blunts tgf{beta} signaling and production of multiple tgf{beta}-dependent antiangiogenic factors. Cancer Res 2010; 70: 8233–8246. CASPubMedPubMed Central Google Scholar
Ohyashiki M, Ohyashiki JH, Hirota A, Kobayashi C, Ohyashiki K . Age-related decrease of mirna-92a levels in human cd8+ t-cells correlates with a reduction of naive t lymphocytes. Immunity Ageing 2011; 8: 11. CASPubMedPubMed Central Google Scholar
Gupta S, Read DE, Deepti A, Cawley K, Gupta A, Oommen D et al. Perk-dependent repression of mir-106b-25 cluster is required for er stress-induced apoptosis. Cell Death Dis 2012; 3: e333. CASPubMedPubMed Central Google Scholar
Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al. Augmentation of tumor angiogenesis by a myc-activated microrna cluster. Nat Genet 2006; 38: 1060–1065. CASPubMedPubMed Central Google Scholar
Wang J, Greene SB, Bonilla-Claudio M, Tao Y, Zhang J, Bai Y et al. Bmp signaling regulates myocardial differentiation from cardiac progenitors through a microrna-mediated mechanism. Dev Cell 2010; 19: 903–912. CASPubMedPubMed Central Google Scholar
Carraro G, El-Hashash A, Guidolin D, Tiozzo C, Turcatel G, Young BM et al. Mir-17 family of micrornas controls fgf10-mediated embryonic lung epithelial branching morphogenesis through mapk14 and stat3 regulation of e-cadherin distribution. Dev Biol 2009; 333: 238–250. CASPubMedPubMed Central Google Scholar
Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL . Transgenic over-expression of the microrna mir-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007; 310: 442–453. CASPubMedPubMed Central Google Scholar
Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al. Lymphoproliferative disease and autoimmunity in mice with increased mir-17-92 expression in lymphocytes. Nat Immunol 2008; 9: 405–414. CASPubMedPubMed Central Google Scholar
Jiang S, Li C, Olive V, Lykken E, Feng F, Sevilla J et al. Molecular dissection of the mir-17-92 cluster's critical dual roles in promoting th1 responses and preventing inducible treg differentiation. Blood 2011; 118: 5487–5497. CASPubMedPubMed Central Google Scholar
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microrna expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261. CASPubMedPubMed Central Google Scholar
Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A et al. Reprogramming of mirna networks in cancer and leukemia. Genome Res 2010; 20: 589–599. CASPubMedPubMed Central Google Scholar
Alencar AJ, Malumbres R, Kozloski GA, Advani R, Talreja N, Chinichian S et al. Micrornas are independent predictors of outcome in diffuse large b-cell lymphoma patients treated with r-chop. Clin Can Res 2011; 17: 4125–4135. CAS Google Scholar
Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P et al. Genetic dissection of the mir-17∼92 cluster of micrornas in myc-induced b-cell lymphomas. Genes Dev 2009; 23: 2806–2811. CASPubMedPubMed Central Google Scholar
Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C et al. Mir-19 is a key oncogenic component of mir-17-92. Genes Dev 2009; 23: 2839–2849. CASPubMedPubMed Central Google Scholar
Moussay E, Wang K, Cho JH, van Moer K, Pierson S, Paggetti J et al. Microrna as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2011; 108: 6573–6578. CASPubMedPubMed Central Google Scholar
Willimott S, Wagner SD . Stromal cells and cd40 ligand (cd154) alter the mirnome and induce mirna clusters including, mir-125b/mir-99a/let-7c and mir-17-92 in chronic lymphocytic leukaemia. Leukemia 2012; 26: 1113–1116. CASPubMed Google Scholar
Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microrna expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008; 105: 15535–15540. CASPubMedPubMed Central Google Scholar
Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den Berge IJ, Sun SM et al. Mir-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 2011; 118: 916–925. CASPubMedPubMed Central Google Scholar
Diaz-Beya M, Navarro A, Ferrer G, Diaz T, Gel B, Camos M et al. Acute myeloid leukemia with translocation (8;16)(p11;p13) and myst3-crebbp rearrangement harbors a distinctive microrna signature targeting ret proto-oncogene. Leukemia 2012; 27: 595–603. PubMed Google Scholar
Wang CL, Wang BB, Bartha G, Li L, Channa N, Klinger M et al. Activation of an oncogenic microrna cistron by provirus integration. Proc Natl Acad Sci USA 2006; 103: 18680–18684. CASPubMedPubMed Central Google Scholar
Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM et al. Mir-17∼92 cooperates with rb pathway mutations to promote retinoblastoma. Genes Dev 2011; 25: 1734–1745. CASPubMedPubMed Central Google Scholar
Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H et al. Over- and under-expressed micrornas in human colorectal cancer. Int J Oncol 2009; 34: 1069–1075. CASPubMed Google Scholar
Tsuchida A, Ohno S, Wu W, Borjigin N, Fujita K, Aoki T et al. Mir-92 is a key oncogenic component of the mir-17-92 cluster in colon cancer. Cancer Sci 2011; 102: 2264–2271. CASPubMed Google Scholar
Yu G, Tang JQ, Tian ML, Li H, Wang X, Wu T et al. Prognostic values of the mir-17-92 cluster and its paralogs in colon cancer. J Surg Oncol 2012; 106: 232–237. CASPubMed Google Scholar
Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J et al. Differential expression of micrornas in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut 2009; 58: 1375–1381. CASPubMed Google Scholar
Reid JF, Sokolova V, Zoni E, Lampis A, Pizzamiglio S, Bertan C et al. Mirna profiling in colorectal cancer highlights mir-1 involvement in met-dependent proliferation. Mol Can Res 2012; 10: 504–515. CAS Google Scholar
Gilbertson RJ, Ellison DW . The origins of medulloblastoma subtypes. Ann Rev Pathol 2008; 3: 341–365. CAS Google Scholar
Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A et al. The mir-17∼92 cluster collaborates with the sonic hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 2009; 106: 2812–2817. CASPubMedPubMed Central Google Scholar
Schulte JH, Marschall T, Martin M, Rosenstiel P, Mestdagh P, Schlierf S et al. Deep sequencing reveals differential expression of micrornas in favorable versus unfavorable neuroblastoma. Nucleic Acids Res 2010; 38: 5919–5928. CASPubMedPubMed Central Google Scholar
Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and bim. PLoS One 2008; 3: e2236. PubMedPubMed Central Google Scholar
Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A et al. Microrna expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007; 26: 4442–4452. CASPubMed Google Scholar
Morimura R, Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Nagata H et al. Novel diagnostic value of circulating mir-18a in plasma of patients with pancreatic cancer. Br J Cancer 2011; 105: 1733–1740. CASPubMedPubMed Central Google Scholar
Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P et al. Microrna sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 2011; 71: 4443–4453. CASPubMedPubMed Central Google Scholar
Leivonen SK, Makela R, Ostling P, Kohonen P, Haapa-Paananen S, Kleivi K et al. Protein lysate microarray analysis to identify micrornas regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 2009; 28: 3926–3936. CASPubMed Google Scholar
Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y et al. Microrna 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci USA 2010; 107: 8231–8236. CASPubMedPubMed Central Google Scholar
Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC et al. The mir-106b-25 cluster targets smad7, activates tgf-beta signaling, and induces emt and tumor initiating cell characteristics downstream of six1 in human breast cancer. Oncogene 2012; 31: 5162–5171. CASPubMedPubMed Central Google Scholar
Fan X, Liu Y, Jiang J, Ma Z, Wu H, Liu T et al. Mir-20a promotes proliferation and invasion by targeting app in human ovarian cancer cells. Acta Biochim Biophys Sin 2010; 42: 318–324. CASPubMed Google Scholar
Osada H, Takahashi T . Let-7 and mir-17-92: Small-sized major players in lung cancer development. Cancer Sci 2011; 102: 9–17. CASPubMed Google Scholar
Chen Q, Si Q, Xiao S, Xie Q, Lin J, Wang C et al. Prognostic significance of serum mir-17-5p in lung cancer. Medical Oncol 2013; 30: 353. Google Scholar
Heegaard NH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC . Circulating micro-rna expression profiles in early stage nonsmall cell lung cancer. Int J Cancer 2012; 130: 1378–1386. CASPubMed Google Scholar
Neal CS, Michael MZ, Rawlings LH, Van der Hoek MB, Gleadle JM . The vhl-dependent regulation of micrornas in renal cancer. BMC Med 2010; 8: 64. PubMedPubMed Central Google Scholar
Jung M, Mollenkopf HJ, Grimm C, Wagner I, Albrecht M, Waller T et al. Microrna profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med 2009; 13: 3918–3928. PubMedPubMed Central Google Scholar
Chow TF, Mankaruos M, Scorilas A, Youssef Y, Girgis A, Mossad S et al. The mir-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol 2010; 183: 743–751. CASPubMed Google Scholar
Connolly E, Melegari M, Landgraf P, Tchaikovskaya T, Tennant BC, Slagle BL et al. Elevated expression of the mir-17-92 polycistron and mir-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol 2008; 173: 856–864. CASPubMedPubMed Central Google Scholar
Shigoka M, Tsuchida A, Matsudo T, Nagakawa Y, Saito H, Suzuki Y et al. Deregulation of mir-92a expression is implicated in hepatocellular carcinoma development. Pathol Int 2010; 60: 351–357. CASPubMed Google Scholar
Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG et al. Role of the mir-106b-25 microrna cluster in hepatocellular carcinoma. Cancer Sci 2009; 100: 1234–1242. CASPubMed Google Scholar
Thayanithy V, Sarver AL, Kartha RV, Li L, Angstadt AY, Breen M et al. Perturbation of 14q32 mirnas-cmyc gene network in osteosarcoma. Bone 2012; 50: 171–181. CASPubMed Google Scholar
Huang G, Nishimoto K, Zhou Z, Hughes D, Kleinerman ES . Mir-20a encoded by the mir-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating fas expression. Cancer Res 2012; 72: 908–916. CASPubMed Google Scholar
Taganov KD, Boldin MP, Baltimore D . Micrornas and immunity: Tiny players in a big field. Immunity 2007; 26: 133–137. CASPubMed Google Scholar
Small EM, Frost RJ, Olson EN . Micrornas add a new dimension to cardiovascular disease. Circulation 2010; 121: 1022–1032. PubMedPubMed Central Google Scholar
Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F et al. Micrornas 17-5p-20a-106a control monocytopoiesis through aml1 targeting and m-csf receptor upregulation. Nature Cell Biol 2007; 9: 775–787. CASPubMed Google Scholar
Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A et al. Microrna-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009; 324: 1710–1713. CASPubMed Google Scholar
Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C et al. Circulating micrornas in patients with coronary artery disease. Circulation Res 2010; 107: 677–684. CASPubMed Google Scholar
Tijsen AJ, Pinto YM, Creemers EE . Circulating micrornas as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 2012; 303: H1085–H1095. CASPubMed Google Scholar
Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N et al. Microparticles: major transport vehicles for distinct micrornas in circulation. Cardiovascular Res 2012; 93: 633–644. CAS Google Scholar
Hebert SS, De Strooper B . Alterations of the microrna network cause neurodegenerative disease. Trends Neurosci 2009; 32: 199–206. CASPubMed Google Scholar
Schonrock N, Matamales M, Ittner LM, Gotz J . Microrna networks surrounding app and amyloid-beta metabolism--implications for alzheimer's disease. Exp Neurol 2012; 235: 447–454. CASPubMed Google Scholar
Otaegui D, Baranzini SE, Armañanzas R, Calvo B, Muñoz-Culla M, Khankhanian P et al. Differential micro rna expression in pbmc from multiple sclerosis patients. PLoS One 2009; 4: e6309. PubMedPubMed Central Google Scholar
Lindberg RL, Hoffmann F, Mehling M, Kuhle J, Kappos L . Altered expression of mir-17-5p in cd4+ lymphocytes of relapsing-remitting multiple sclerosis patients. Eur J Immunol 2010; 40: 888–898. CASPubMed Google Scholar
Cox MB, Cairns MJ, Gandhi KS, Carroll AP, Moscovis S, Stewart GJ et al. Consortium ANMSG. Micrornas mir-17 and mir-20a inhibit t cell activation genes and are under-expressed in ms whole blood. PLoS One 2010; 5: e12132. PubMedPubMed Central Google Scholar
De Santis G, Ferracin M, Biondani A, Caniatti L, Rosaria Tola M, Castellazzi M et al. Altered mirna expression in t regulatory cells in course of multiple sclerosis. J Neuroimmunol 2010; 226: 165–171. CASPubMed Google Scholar
Angerstein C, Hecker M, Paap BK, Koczan D, Thamilarasan M, Thiesen HJ et al. Integration of microrna databases to study micrornas associated with multiple sclerosis. Mol Neurobiol 2012; 45: 520–535. CASPubMed Google Scholar
Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW . Micrornas show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 2007; 8: R173. PubMedPubMed Central Google Scholar
Bates DJ, Liang R, Li N, Wang E . The impact of noncoding rna on the biochemical and molecular mechanisms of aging. Biochim et Biophys Acta 2009; 1790: 970–979. CAS Google Scholar
Grillari J, Hackl M, Grillari-Voglauer R . Mir-17-92 cluster: Ups and downs in cancer and aging. Biogerontology 2010; 11: 501–506. CASPubMedPubMed Central Google Scholar
Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Muck C et al. mir-19b, mir-20a, and mir-106a are down-regulated in human aging. Aging Cell 2010; 9: 291–296. CASPubMed Google Scholar
Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell 1993; 75: 843–854. CASPubMed Google Scholar
Wightman B, Ha I, Ruvkun G . Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75: 855–862. CASPubMed Google Scholar
Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I . Micrornas to nanog, oct4 and sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008; 455: 1124–1128. CASPubMed Google Scholar
Brodersen P, Voinnet O . Revisiting the principles of microrna target recognition and mode of action. Nat Rev Mol Cell Biol 2009; 10: 141–148. CASPubMed Google Scholar
Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E et al. Mir-24 inhibits cell proliferation by targeting e2f2, myc, and other cell-cycle genes via binding to ‘seedless' 3'utr microrna recognition elements. Mol Cell 2009; 35: 610–625. CASPubMedPubMed Central Google Scholar
Rigoutsos I, Tsirigos A . Micrornas in Development and Cancer in Molecular Medicine and Medicinal Chemistry, Slack f (eds) Imperial College Press: Danvers, MA, USA pp 237–273 2010. Google Scholar
Xia Z, Clark P, Huynh T, Loher P, Zhao Y, Chen HW et al. Molecular dynamics simulations of ago silencing complexes reveal a large repertoire of admissible 'seed-less' targets. Sci Rep 2012; 2: 569. PubMedPubMed Central Google Scholar
Ha I, Wightman B, Ruvkun G . A bulged lin-4/lin-14 rna duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev 1996; 10: 3041–3050. CASPubMed Google Scholar
Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ . The C. elegans microrna let-7 binds to imperfect let-7 complementary sites from the lin-41 3'utr. Genes Dev 2004; 18: 132–137. CASPubMedPubMed Central Google Scholar
Easow G, Teleman AA, Cohen SM . Isolation of microrna targets by mirnp immunopurification. RNA 2007; 13: 1198–1204. CASPubMedPubMed Central Google Scholar
Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of micrornas on protein output. Nature 2008; 455: 64–71. CASPubMedPubMed Central Google Scholar
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by micrornas. Nature 2008; 455: 58–63. CASPubMed Google Scholar
Chi SW, Zang JB, Mele A, Darnell RB . Argonaute hits-clip decodes microrna-mrna interaction maps. Nature 2009; 460: 479–486. CASPubMedPubMed Central Google Scholar
Fabian MR, Sonenberg N, Filipowicz W . Regulation of mrna translation and stability by micrornas. Ann Rev Biochem 2010; 79: 351–379. CASPubMed Google Scholar
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P et al. Transcriptome-wide identification of rna-binding protein and microrna target sites by par-clip. Cell 2010; 141: 129–141. CASPubMedPubMed Central Google Scholar
Thomas M, Lieberman J, Lal A . Desperately seeking microrna targets. Nat Struc Mol Biol 2010; 17: 1169–1174. CAS Google Scholar
Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE et al. Comprehensive discovery of endogenous argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 2010; 17: 173–179. CASPubMedPubMed Central Google Scholar
Chi SW, Hannon GJ, Darnell RB . An alternative mode of microrna target recognition. Nat Struc Mol Biol 2012; 19: 321–327. CAS Google Scholar
Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M et al. The viral and cellular microrna targetome in lymphoblastoid cell lines. PLoS Pathogens 2012; 8: e1002484. CASPubMedPubMed Central Google Scholar
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM et al. A pattern-based method for the identification of microrna binding sites and their corresponding heteroduplexes. Cell 2006; 126: 1203–1217. CASPubMed Google Scholar
Forman JJ, Legesse-Miller A, Coller HA . A search for conserved sequences in coding regions reveals that the let-7 microrna targets dicer within its coding sequence. Proc Natl Acad Sci USA 2008; 105: 14879–14884. CASPubMedPubMed Central Google Scholar
Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH . Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res 2004; 32: 6284–6291. CASPubMedPubMed Central Google Scholar
Abdelmohsen K, Srikantan S, Kuwano Y, Gorospe M . Mir-519 reduces cell proliferation by lowering rna-binding protein hur levels. Proc Natl Acad Sci USA 2008; 105: 20297–20302. CASPubMedPubMed Central Google Scholar
Rigoutsos I . New tricks for animal micrornas: Targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res 2009; 69: 3245–3248. CASPubMed Google Scholar
Nelson PT, Wang WX, Mao G, Wilfred BR, Xie K, Jennings MH et al. Specific sequence determinants of mir-15/107 microrna gene group targets. Nucleic Acids Res 2011; 39: 8163–8172. CASPubMedPubMed Central Google Scholar
Surdziel E, Cabanski M, Dallmann I, Lyszkiewicz M, Krueger A, Ganser A et al. Enforced expression of mir-125b affects myelopoiesis by targeting multiple signaling pathways. Blood 2011; 117: 4338–4348. CASPubMed Google Scholar
Adilakshmi T, Sudol I, Tapinos N . Combinatorial action of mirnas regulates transcriptional and post-transcriptional gene silencing following in vivo pns injury. PLoS One 2012; 7: e39674. CASPubMedPubMed Central Google Scholar
Cui YH, Xiao L, Rao JN, Zou T, Liu L, Chen Y et al. Mir-503 represses cug-binding protein 1 translation by recruiting cugbp1 mrna to processing bodies. Mol Biol Cell 2012; 23: 151–162. CASPubMedPubMed Central Google Scholar
Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM et al. Identification of the mir-106b∼25 microrna cluster as a proto-oncogenic pten-targeting intron that cooperates with its host gene mcm7 in transformation. Sci Signaling 2010; 3: ra29. Google Scholar
Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M et al. A long noncoding rna controls muscle differentiation by functioning as a competing endogenous rna. Cell 2011; 147: 358–369. CASPubMedPubMed Central Google Scholar
Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D . Micrornas and other tiny endogenous rnas in C. elegans. Currt Biol 2003; 13: 807–818. CAS Google Scholar
Stark A, Kheradpour P, Parts L, Brennecke J, Hodges E, Hannon GJ et al. Systematic discovery and characterization of fly micrornas using 12 Drosophila genomes. Genome Res 2007; 17: 1865–1879. CASPubMedPubMed Central Google Scholar
Finnerty JR, Wang WX, Hebert SS, Wilfred BR, Mao G, Nelson PT . The mir-15/107 group of microrna genes: Evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 2010; 402: 491–509. CASPubMedPubMed Central Google Scholar
Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM et al. Most Caenorhabditis elegans micrornas are individually not essential for development or viability. PLoS Genet 2007; 3: e215. PubMedPubMed Central Google Scholar
Sokol NS, Xu P, Jan Y-N, Ambros V . Drosophila let-7 microrna is required for remodeling of the neuromusculature during metamorphosis. Genes Dev 2008; 22: 1591–1596. CASPubMedPubMed Central Google Scholar
Jackson AL, Levin AA . Developing microrna therapeutics: Approaching the unique complexities. Nucleic Acid Ther 2012; 22: 213–225. CASPubMed Google Scholar
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . A coding-independent function of gene and pseudogene mrnas regulates tumour biology. Nature 2010; 465: 1033–1038. CASPubMedPubMed Central Google Scholar
Rigoutsos I, Furnari F . Gene-expression forum: Decoy for micrornas. Nature 2010; 465: 1016–1017. CASPubMed Google Scholar
Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M . A quantitative analysis of clip methods for identifying binding sites of rna-binding proteins. Nat Methods 2011; 8: 559–564. CASPubMed Google Scholar
Leung AK, Young AG, Bhutkar A, Zheng GX, Bosson AD, Nielsen CB et al. Genome-wide identification of ago2 binding sites from mouse embryonic stem cells with and without mature micrornas. Nat Struc Mol Biol 2011; 18: 237–244. CAS Google Scholar