GSK-3 is a master regulator of neural progenitor homeostasis (original) (raw)
Doble, B.W. & Woodgett, J.R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci.116, 1175–1186 (2003). ArticleCAS Google Scholar
Kockeritz, L., Doble, B., Patel, S. & Woodgett, J.R. Glycogen synthase kinase-3: an overview of an over-achieving protein kinase. Curr. Drug Targets7, 1377–1388 (2006). ArticleCAS Google Scholar
Beaulieu, J.M., Gainetdinov, R.R. & Caron, M.G. The Akt–GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol. Sci.28, 166–172 (2007). ArticleCAS Google Scholar
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med.10, 55–63 (2004). ArticleCAS Google Scholar
Ying, Q.L. et al. The ground state of embryonic stem cell self-renewal. Nature453, 519–523 (2008). ArticleCAS Google Scholar
Bone, H.K. et al. Involvement of GSK-3 in regulation of murine embryonic stem cell self-renewal revealed by a series of bisindolylmaleimides. Chem. Biol.16, 15–27 (2009). ArticleCAS Google Scholar
Mao, Y. et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell136, 1017–1031 (2009). ArticleCAS Google Scholar
Corbin, J.G. et al. Regulation of neural progenitor cell development in the nervous system. J. Neurochem.106, 2272–2287 (2008). ArticleCAS Google Scholar
Shimizu, T. et al. Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol. Cell. Biol.28, 7427–7441 (2008). ArticleCAS Google Scholar
Knoepfler, P.S. & Kenney, A.M. Neural precursor cycling at sonic speed: N-Myc pedals, GSK-3 brakes. Cell Cycle5, 47–52 (2006). ArticleCAS Google Scholar
Bechard, M. & Dalton, S. Subcellular localization of glycogen synthase kinase 3beta controls embryonic stem cell self-renewal. Mol. Cell. Biol.29, 2092–2104 (2009). ArticleCAS Google Scholar
Doble, B.W. & Woodgett, J.R. Exploring pluripotency with chemical genetics. Cell Stem Cell4, 98–100 (2009). ArticleCAS Google Scholar
Otto, T. et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell15, 67–78 (2009). ArticleCAS Google Scholar
Jia, J. et al. Shaggy/GSK3 antagonizes Hedgehog signaling by regulating Cubitus interruptus. Nature416, 548–552 (2002). ArticleCAS Google Scholar
Espinosa, L., Ingles-Esteve, J., Aguilera, C. & Bigas, A. Phosphorylation by glycogen synthase kinase 3 beta downregulates Notch activity, a link for Notch and Wnt pathways. J. Biol. Chem.278, 32227–32235 (2003). ArticleCAS Google Scholar
Uemura, K. et al. GSK3beta activity modifies the localization and function of presenilin 1. J. Biol. Chem.282, 15823–15832 (2007). ArticleCAS Google Scholar
Jin, Y.H., Kim, H., Oh, M., Ki, H. & Kim, K. Regulation of Notch1/NICD and Hes1 expressions by GSK-3alpha/beta. Mol. Cells27, 15–19 (2009). ArticleCAS Google Scholar
Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet.23, 99–103 (1999). ArticleCAS Google Scholar
Yokota, Y. et al. The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron61, 42–56 (2009). ArticleCAS Google Scholar
MacAulay, K. et al. Glycogen synthase kinase 3alpha–specific regulation of murine hepatic glycogen metabolism. Cell Metab.6, 329–337 (2007). ArticleCAS Google Scholar
Patel, S. et al. Tissue-specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Mol. Cell. Biol.28, 6314–6328 (2008). ArticleCAS Google Scholar
Kim, W.Y. et al. Essential roles for GSK-3s and GSK-3–primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron52, 981–996 (2006). ArticleCAS Google Scholar
Sessa, A., Mao, C.A., Hadjantonakis, A.K., Klein, W.H. & Broccoli, V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron60, 56–69 (2008). ArticleCAS Google Scholar
Ding, Q. et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development125, 2533–2543 (1998). CASPubMed Google Scholar
Chenn, A. & Walsh, C.A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science297, 365–369 (2002). ArticleCAS Google Scholar
Woodhead, G.J., Mutch, C.A., Olson, E.C. & Chenn, A. Cell-autonomous beta-catenin signaling regulates cortical precursor proliferation. J. Neurosci.26, 12620–12630 (2006). ArticleCAS Google Scholar
Chen, S. et al. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor–mediated transcription. J. Cell Biol.152, 87–96 (2001). ArticleCAS Google Scholar
Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol.6, 777–788 (2005). Article Google Scholar
Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci.8, 438–450 (2007). ArticleCAS Google Scholar
Zechner, D. et al. Beta-catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol.258, 406–418 (2003). ArticleCAS Google Scholar
Machon, O. et al. A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev. Biol.311, 223–237 (2007). ArticleCAS Google Scholar
Gulacsi, A.A. & Anderson, S.A. Beta-catenin–mediated Wnt signaling regulates neurogenesis in the ventral telencephalon. Nat. Neurosci.11, 1383–1391 (2008). ArticleCAS Google Scholar
Yoon, K. & Gaiano, N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci.8, 709–715 (2005). ArticleCAS Google Scholar
Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signaling distinguishes neural stem cells from intermediate progenitors. Nature449, 351–355 (2007). ArticleCAS Google Scholar
Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron58, 52–64 (2008). ArticleCAS Google Scholar
He, T.C. et al. Identification of c-MYC as a target of the APC pathway. Science281, 1509–1512 (1998). ArticleCAS Google Scholar
Calvisi, D.F., Ladu, S., Factor, V.M. & Thorgeirsson, S.S. Activation of beta-catenin provides proliferative and invasive advantages in c-myc/TGF-alpha hepatocarcinogenesis promoted by phenobarbital. Carcinogenesis25, 901–908 (2004). ArticleCAS Google Scholar
Eilers, M. & Eisenman, R.N. Myc's broad reach. Genes Dev.22, 2755–2766 (2008). ArticleCAS Google Scholar
Cappello, S. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat. Neurosci.9, 1099–1107 (2006). ArticleCAS Google Scholar