Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome (original) (raw)

References

  1. Strebel, K. et al. The HIV 'A' (sor) gene product is essential for virus infectivity. Nature 328, 728–730 (1987).
    Article CAS PubMed Google Scholar
  2. von Schwedler, U., Song, J., Aiken, C. & Trono, D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J. Virol. 67, 4945–4955 (1993).
    CAS PubMed PubMed Central Google Scholar
  3. Gabuzda, D.H. et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol. 66, 6489–6495 (1992).
    CAS PubMed PubMed Central Google Scholar
  4. Madani, N. & Kabat, D. An endogenous Inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vlf protein. J. Virol. 72, 10251–10255 (1998).
    CAS PubMed PubMed Central Google Scholar
  5. Simon, J.H. et al. The regulation of primate immunodeficiency virus infectivity by Vlf is cell species restricted: a role for Vlf in determining virus host range and cross-species transmission. EMBO J. 17, 1259–1267 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  6. Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).
    Article CAS PubMed Google Scholar
  7. Goncalves, J., Korin, Y., Zack, J. & Gabuzda, D. Role of Vif in human immunodeficiency virus type 1 reverse transcription. J. Virol. 70, 8701–8709 (1996).
    CAS PubMed PubMed Central Google Scholar
  8. Simon, J.H. & Malim, M.H. The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J. Virol. 70, 5297–5305 (1996).
    CAS PubMed PubMed Central Google Scholar
  9. Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003).
    Article CAS PubMed Google Scholar
  10. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A.J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112 (2003).
    Article CAS PubMed Google Scholar
  11. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  12. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).
    Article CAS PubMed Google Scholar
  13. Harris, R.S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).
    Article CAS PubMed Google Scholar
  14. Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W.C. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol. Cell 12, 591–601 (2003).
    Article CAS PubMed Google Scholar
  15. Marin, M., Rose, K.M., Kozak, S.L. & Kabat, D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat. Med. 9, 1398–1403 (2003).
    Article CAS PubMed Google Scholar
  16. Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060 (2003).
    Article CAS PubMed Google Scholar
  17. Sheehy, A.M., Gaddis, N.C. & Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 9, 1404–1407 (2003).
    Article CAS PubMed Google Scholar
  18. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002).
    Article CAS PubMed Google Scholar
  19. Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).
    Article CAS PubMed Google Scholar
  20. Yang, Y., Sowden, M.P. & Smith, H.C. Induction of cytidine to uridine editing on cytoplasmic apolipoprotein B mRNA by overexpressing APOBEC-1. J. Biol. Chem. 275, 22663–22669 (2000).
    Article CAS PubMed Google Scholar
  21. Lau, P.P. et al. A DnaJ protein, apobec-1-binding protein-2, modulates apolipoprotein B mRNA editing. J. Biol. Chem. 276, 46445–46452 (2001).
    Article CAS PubMed Google Scholar
  22. Anant, S., MacGinnitie, A.J. & Davidson, N.O. apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, is a novel RNA-binding protein. J. Biol. Chem. 270, 14762–14767 (1995).
    Article CAS PubMed Google Scholar
  23. Muto, T., Muramatsu, M., Taniwaki, M., Kinoshita, K. & Honjo, T. Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics 68, 85–88 (2000).
    Article CAS PubMed Google Scholar
  24. Wedekind, J.E., Dance, G.S., Sowden, M.P. & Smith, H.C. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19, 207–216 (2003).
    Article CAS PubMed Google Scholar
  25. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).
    Article CAS PubMed Google Scholar
  26. Schrofelbauer, B., Chen, D. & Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl. Acad. Sci. USA 101, 3927–3932 (2004).
    Article PubMed PubMed Central Google Scholar
  27. Schroder, A.R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).
    Article CAS PubMed Google Scholar
  28. Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single-stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  29. Charneau, P. & Clavel, F. A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. J. Virol. 65, 2415–2421 (1991).
    CAS PubMed PubMed Central Google Scholar
  30. Vartanian, J.P., Henry, M. & Wain-Hobson, S. Sustained G→A hypermutation during reverse transcription of an entire human immunodeficiency virus type 1 strain Vau group O genome. J. Gen. Virol. 83, 801–805 (2002).
    Article CAS PubMed Google Scholar
  31. Borman, A.M., Quillent, C., Charneau, P., Kean, K.M. & Clavel, F. A highly defective HIV-1 group O provirus: evidence for the role of local sequence determinants in G→A hypermutation during negative-strand viral DNA synthesis. Virology 208, 601–609 (1995).
    Article CAS PubMed Google Scholar
  32. Berkhout, B. & van Hemert, F.J. The unusual nucleotide content of the HIV RNA genome results in a biased amino acid composition of HIV proteins. Nucleic Acids Res. 22, 1705–1711 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  33. Berkhout, B., Grigoriev, A., Bakker, M. & Lukashov, V.V. Codon and amino acid usage in retroviral genomes is consistent with virus-specific nucleotide pressure. AIDS Res. Hum. Retroviruses 18, 133–141 (2002).
    Article CAS PubMed Google Scholar
  34. Paxton, W., Connor, R.I. & Landau, N.R. Incorporation of Vpr into human immunodeficiency virus type-1 virions: requirement for the p6 region of gag and mutational analysis. J. Virol. 67, 7229–7237 (1993).
    CAS PubMed PubMed Central Google Scholar
  35. Rose, P.P. & Korber, B.T. Detecting hypermutations in viral sequences with an emphasis on G→A hypermutation. Bioinformatics 16, 400–401 (2000).
    Article CAS PubMed Google Scholar
  36. Petersen-Mahrt, S.K. & Neuberger, M.S. In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J. Biol. Chem. 278, 19583–19586 (2003).
    Article CAS PubMed Google Scholar

Download references