GRIN2B (original) (raw)

From Wikipedia, the free encyclopedia

Protein-coding gene in the species Homo sapiens

GRIN2B
Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes5EWM, 5EWL, 5EWJ
Identifiers
Aliases GRIN2B, GluN2B, MRD6, NMDAR2B, NR2B, hNR3, EIEE27, glutamate ionotropic receptor NMDA type subunit 2B, NR3, DEE27
External IDs OMIM: 138252; MGI: 95821; HomoloGene: 646; GeneCards: GRIN2B; OMA:GRIN2B - orthologs
Gene location (Human)Chromosome 12 (human)Chr.Chromosome 12 (human)[1]Chromosome 12 (human)Genomic location for GRIN2BGenomic location for GRIN2BBand12p13.1Start13,437,942 bp[1]End13,982,002 bp[1]
Gene location (Mouse)Chromosome 6 (mouse)Chr.Chromosome 6 (mouse)[2]Chromosome 6 (mouse)Genomic location for GRIN2BGenomic location for GRIN2BBand6 G1|6 66.38 cMStart135,690,231 bp[2]End136,150,509 bp[2]
RNA expression patternBgeeHuman Mouse (ortholog)Top expressed inbuccal mucosa cellBrodmann area 23sural nervemiddle temporal gyrusprimary visual cortexcorpus callosumprefrontal cortexnucleus accumbensendothelial celldorsolateral prefrontal cortexTop expressed inlateral septal nucleusolfactory tuberclelateral geniculate nucleusdentate gyrus of hippocampal formation granule cellanterior amygdaloid areasuperior frontal gyrussubiculumseminiferous tubulenucleus accumbensprimary visual cortexMore reference expression dataBioGPSMore reference expression data
Gene ontologyMolecular function zinc ion binding glycine binding metal ion binding ion channel activity protein binding ionotropic glutamate receptor activity extracellularly glutamate-gated ion channel activity NMDA glutamate receptor activity glutamate binding glutamate-gated calcium ion channel activity amyloid-beta binding signaling receptor activity Cellular component integral component of membrane postsynaptic membrane membrane synapse NMDA selective glutamate receptor complex cell surface cell junction neuron projection intracellular anatomical structure integral component of plasma membrane postsynaptic density plasma membrane cytoplasm synaptic membrane postsynaptic density membrane Biological process glutamate receptor signaling pathway ephrin receptor signaling pathway ion transport MAPK cascade learning or memory response to ethanol chemical synaptic transmission ionotropic glutamate receptor signaling pathway excitatory postsynaptic potential regulation of ion transmembrane transport transport calcium-mediated signaling protein heterotetramerization regulation of molecular function calcium ion transmembrane import into cytosol multicellular organism development brain development regulation of synaptic plasticity long-term potentiation excitatory chemical synaptic transmission positive regulation of neuron death negative regulation of dendritic spine maintenance positive regulation of cysteine-type endopeptidase activity regulation of NMDA receptor activity Sources:Amigo / QuickGO
OrthologsSpeciesHuman MouseEntrez290414812EnsemblENSG00000273079ENSMUSG00000030209UniProtQ13224Q01097RefSeq (mRNA)NM_000834NM_008171NM_001363750RefSeq (protein)NP_000825NP_032197NP_001350679Location (UCSC)Chr 12: 13.44 – 13.98 MbChr 6: 135.69 – 136.15 MbPubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Glutamate [NMDA] receptor subunit epsilon-2, also known as _N_-methyl D-aspartate receptor subtype 2B (NMDAR2B or NR2B), is a protein that in humans is encoded by the GRIN2B gene.[5]

_N_-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. The NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heterotetramers composed of two molecules of the key receptor subunit NMDAR1 (GRIN1) and two drawn from one or more of the four NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C), and NMDAR2D (GRIN2D). The NR2 subunit acts as the agonist binding site for glutamate, one of the predominant excitatory neurotransmitter receptors in the mammalian brain.[6]

NR2B has been associated with age- and visual-experience-dependent plasticity in the neocortex of rats, where an increased NR2B/NR2A ratio correlates directly with the stronger excitatory LTP in young animals. This is thought to contribute to experience-dependent refinement of developing cortical circuits.[7]

Engineered to overexpress GRIN2B in their brains, mice and rats exhibit improved mental function. The "Doogie" mouse performed twice as well on one learning test.[8][9]

GRIN2B has been shown to interact with:

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000273079Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000030209Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (May 1992). "Heteromeric NMDA receptors: molecular and functional distinction of subtypes". Science. 256 (5060): 1217–21. Bibcode:1992Sci...256.1217M. doi:10.1126/science.256.5060.1217. PMID 1350383. S2CID 989677.
  6. ^ "Entrez Gene: GRIN2B glutamate receptor, ionotropic, N-methyl D-aspartate 2B".
  7. ^ Yoshimura Y, Ohmura T, Komatsu Y (July 2003). "Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex". The Journal of Neuroscience. 23 (16): 6557–66. doi:10.1523/JNEUROSCI.23-16-06557.2003. PMC 6740618. PMID 12878697.
  8. ^ Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ (September 1999). "Genetic enhancement of learning and memory in mice". Nature. 401 (6748): 63–9. Bibcode:1999Natur.401...63T. doi:10.1038/43432. PMID 10485705. S2CID 481884.
  9. ^ Wang D, Cui Z, Zeng Q, Kuang H, Wang LP, Tsien JZ, Cao X (October 2009). "Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats". PLOS ONE. 4 (10): e7486. Bibcode:2009PLoSO...4.7486W. doi:10.1371/journal.pone.0007486. PMC 2759522. PMID 19838302.
  10. ^ "The Effects of a Novel NMDA NR2B-Subtype Selective Antagonist, EVT 101, on Brain Function". Nct00526968. ClinicalTrials.gov. 2008-02-14. Retrieved 2010-08-19.
  11. ^ "Phase II study with NR2B sub-type selective NMDA antagonist in treatment-resistant depression voluntarily terminated". evotec.com. 2011-05-18. Retrieved 2015-08-24.[_permanent dead link_]
  12. ^ Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM, Sheng M (January 1997). "Competitive binding of alpha-actinin and calmodulin to the NMDA receptor". Nature. 385 (6615): 439–42. Bibcode:1997Natur.385..439W. doi:10.1038/385439a0. PMID 9009191. S2CID 4266742.
  13. ^ a b c Inanobe A, Fujita A, Ito M, Tomoike H, Inageda K, Kurachi Y (June 2002). "Inward rectifier K+ channel Kir2.3 is localized at the postsynaptic membrane of excitatory synapses". American Journal of Physiology. Cell Physiology. 282 (6): C1396–403. doi:10.1152/ajpcell.00615.2001. PMID 11997254.
  14. ^ a b c Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, Takai Y, Rosahl TW, Südhof TC (September 1997). "Binding of neuroligins to PSD-95". Science. 277 (5331): 1511–5. doi:10.1126/science.277.5331.1511. PMID 9278515.
  15. ^ a b c Sans N, Prybylowski K, Petralia RS, Chang K, Wang YX, Racca C, Vicini S, Wenthold RJ (June 2003). "NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex". Nature Cell Biology. 5 (6): 520–30. doi:10.1038/ncb990. PMID 12738960. S2CID 13444388.
  16. ^ a b Lim IA, Hall DD, Hell JW (June 2002). "Selectivity and promiscuity of the first and second PDZ domains of PSD-95 and synapse-associated protein 102". The Journal of Biological Chemistry. 277 (24): 21697–711. doi:10.1074/jbc.M112339200. PMID 11937501.
  17. ^ Niethammer M, Valtschanoff JG, Kapoor TM, Allison DW, Weinberg RJ, Craig AM, Sheng M (April 1998). "CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90". Neuron. 20 (4): 693–707. doi:10.1016/s0896-6273(00)81009-0. PMID 9581762. S2CID 16068361.
  18. ^ Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (September 1995). "Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95". Science. 269 (5231): 1737–40. Bibcode:1995Sci...269.1737K. doi:10.1126/science.7569905. PMID 7569905.
  19. ^ Jo K, Derin R, Li M, Bredt DS (June 1999). "Characterization of MALS/Velis-1, -2, and -3: a family of mammalian LIN-7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic complex". The Journal of Neuroscience. 19 (11): 4189–99. doi:10.1523/JNEUROSCI.19-11-04189.1999. PMC 6782594. PMID 10341223.
  20. ^ Nakazawa T, Watabe AM, Tezuka T, Yoshida Y, Yokoyama K, Umemori H, Inoue A, Okabe S, Manabe T, Yamamoto T (July 2003). "p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-d-aspartate receptor signaling". Molecular Biology of the Cell. 14 (7): 2921–34. doi:10.1091/mbc.E02-09-0623. PMC 165687. PMID 12857875.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.