Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bahler J (2012) Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151(3):671–683. doi:10.1016/j.cell.2012.09.019 CASPubMed CentralPubMed Google Scholar
Enenkel C (2011) Using native gel electrophoresis and phosphofluoroimaging to analyze GFP-tagged proteasomes. In: Dohmen RJ, Scheffner M (eds) Ubiquitin family modifiers and the proteasome: reviews and protocols. Humana Press, New York Google Scholar
Ramos PC, Hockendorff J, Johnson ES, Varshavsky A, Dohmen RJ (1998) Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92(4):489–499 CASPubMed Google Scholar
Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92(3):367–380 CASPubMed Google Scholar
Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268(5210):533–539 CASPubMed Google Scholar
Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471 CASPubMed Google Scholar
Kwon YD, Nagy I, Adams PD, Baumeister W, Jap BK (2004) Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol 335(1):233–245 CASPubMed Google Scholar
Hu G, Lin G, Wang M, Dick L, Xu RM, Nathan C, Li H (2006) Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol Microbiol 59(5):1417–1428. doi:10.1111/j.1365-2958.2005.05036.x CASPubMed Google Scholar
Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, Groettrup M, Groll M (2012) Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148(4):727–738. doi:10.1016/j.cell.2011.12.030 CASPubMed Google Scholar
Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10(5):609–618 CASPubMed Google Scholar
Seemuller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268(5210):579–582 CASPubMed Google Scholar
Seemuller E, Lupas A, Baumeister W (1996) Autocatalytic processing of the 20S proteasome. Nature 382(6590):468–471. doi:10.1038/382468a0 CASPubMed Google Scholar
Heinemeyer W, Ramos PC, Dohmen RJ (2004) The ultimate nanoscale mincer: assembly, structure and active sites of the 20S proteasome core. Cell Mol Life Sci 61(13):1562–1578 CASPubMed Google Scholar
Striebel F, Kress W, Weber-Ban E (2009) Controlled destruction: AAA + ATPases in protein degradation from bacteria to eukaryotes. Curr Opin Struct Biol 19(2):209–217. doi:10.1016/j.sbi.2009.02.006 CASPubMed Google Scholar
Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611–615. doi:10.1126/science.1075898 CASPubMed Google Scholar
Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419(6905):403–407. doi:10.1038/nature01071 CASPubMed Google Scholar
Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127(1):99–111. doi:10.1016/j.cell.2006.07.038 CASPubMed Google Scholar
Zwickl P, Grziwa A, Puhler G, Dahlmann B, Lottspeich F, Baumeister W (1992) Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31(4):964–972 CASPubMed Google Scholar
Zwickl P, Kleinz J, Baumeister W (1994) Critical elements in proteasome assembly. Nat Struct Mol Biol 1(11):765–770 CAS Google Scholar
Zuhl F, Seemuller E, Golbik R, Baumeister W (1997) Dissecting the assembly pathway of the 20S proteasome. FEBS Lett 418(1–2):189–194 CASPubMed Google Scholar
Sharon M, Witt S, Glasmacher E, Baumeister W, Robinson CV (2007) Mass spectrometry reveals the missing links in the assembly pathway of the bacterial 20 S proteasome. J Biol Chem 282(25):18448–18457. doi:10.1074/jbc.M701534200 CASPubMed Google Scholar
Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15(3):237–244. doi:10.1038/nsmb.1389 CASPubMed Google Scholar
Kumoi K, Satoh T, Murata K, Hiromoto T, Mizushima T, Kamiya Y, Noda M, Uchiyama S, Yagi H, Kato K (2013) An archaeal homolog of proteasome assembly factor functions as a proteasome activator. PLoS ONE 8(3):e60294. doi:10.1371/journal.pone.0060294 CASPubMed CentralPubMed Google Scholar
Gerards WL, Enzlin J, Haner M, Hendriks IL, Aebi U, Bloemendal H, Boelens W (1997) The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26. J Biol Chem 272(15):10080–10086 CASPubMed Google Scholar
Sugiyama M, Kurimoto E, Yagi H, Mori K, Fukunaga T, Hirai M, Zaccai G, Kato K (2011) Kinetic asymmetry of subunit exchange of homooligomeric protein as revealed by deuteration-assisted small-angle neutron scattering. Biophys J 101(8):2037–2042. doi:10.1016/j.bpj.2011.09.004 CASPubMed CentralPubMed Google Scholar
Le Tallec B, Barrault MB, Courbeyrette R, Guerois R, Marsolier-Kergoat MC, Peyroche A (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27(4):660–674. doi:10.1016/j.molcel.2007.06.025 PubMed Google Scholar
Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel PM, Kruger E (2000) Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes. J Mol Biol 301(1):1–9. doi:10.1006/jmbi.2000.3959 CASPubMed Google Scholar
Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen RJ, Levy F (2000) Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc Natl Acad Sci USA 97(19):10348–10353. doi:10.1073/pnas.190268597 CASPubMed CentralPubMed Google Scholar
Griffin TA, Slack JP, McCluskey TS, Monaco JJ, Colbert RA (2000) Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Mol Cell Biol Res Commun 3(4):212–217. doi:10.1006/mcbr.2000.0213 CASPubMed Google Scholar
Hirano Y, Hendil KB, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K, Murata S (2005) A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437(7063):1381–1385 CASPubMed Google Scholar
Nandi D, Woodward E, Ginsburg DB, Monaco JJ (1997) Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits. EMBO J 16(17):5363–5375. doi:10.1093/emboj/16.17.5363 CASPubMed CentralPubMed Google Scholar
Frentzel S, Pesold-Hurt B, Seelig A, Kloetzel PM (1994) 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes. J Mol Biol 236(4):975–981 CASPubMed Google Scholar
Li X, Kusmierczyk AR, Wong P, Emili A, Hochstrasser M (2007) Beta-subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J 26(9):2339–2349. doi:10.1038/sj.emboj.7601681 CASPubMed CentralPubMed Google Scholar
Schmidtke G, Kraft R, Kostka S, Henklein P, Frommel C, Lowe J, Huber R, Kloetzel PM, Schmidt M (1996) Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J 15(24):6887–6898 CASPubMed CentralPubMed Google Scholar
Hirano Y, Kaneko T, Okamoto K, Bai M, Yashiroda H, Furuyama K, Kato K, Tanaka K, Murata S (2008) Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J 27(16):2204–2213. doi:10.1038/emboj.2008.148 CASPubMed CentralPubMed Google Scholar
Marques AJ, Glanemann C, Ramos PC, Dohmen RJ (2007) The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J Biol Chem 282(48):34869–34876. doi:10.1074/jbc.M705836200 CASPubMed Google Scholar
Schmidtke G, Schmidt M, Kloetzel PM (1997) Maturation of mammalian 20S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. J Mol Biol 268(1):95–106. doi:10.1006/jmbi.1997.0947 CASPubMed Google Scholar
Kusmierczyk AR, Kunjappu MJ, Kim RY, Hochstrasser M (2011) A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat Struct Mol Biol 18(5):622–629. doi:10.1038/nsmb.2027 CASPubMed CentralPubMed Google Scholar
Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H, Kishimoto T, Niwa S, Kasahara M, Kurimoto E, Sakata E, Takagi K, Suzuki A, Hirano Y, Murata S, Kato K, Yamane T, Tanaka K (2008) Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15(3):228–236. doi:10.1038/nsmb.1386 CASPubMed Google Scholar
Hirano Y, Hayashi H, Iemura S, Hendil KB, Niwa S, Kishimoto T, Kasahara M, Natsume T, Tanaka K, Murata S (2006) Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell 24(6):977–984 CASPubMed Google Scholar
Ramos PC, Marques AJ, London MK, Dohmen RJ (2004) Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J Biol Chem 279(14):14323–14330. doi:10.1074/jbc.M308757200 CASPubMed Google Scholar
Jager S, Groll M, Huber R, Wolf DH, Heinemeyer W (1999) Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J Mol Biol 291(4):997–1013. doi:10.1006/jmbi.1999.2995 CASPubMed Google Scholar
Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J Biol Chem 272(40):25200–25209 CASPubMed Google Scholar
Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf DH, Huber R (1999) The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci USA 96(20):10976–10983 CASPubMed CentralPubMed Google Scholar
Kingsbury DJ, Griffin TA, Colbert RA (2000) Novel propeptide function in 20 S proteasome assembly influences beta subunit composition. J Biol Chem 275(31):24156–24162. doi:10.1074/jbc.M001742200 CASPubMed Google Scholar
De M, Jayarapu K, Elenich L, Monaco JJ, Colbert RA, Griffin TA (2003) Beta 2 subunit propeptides influence cooperative proteasome assembly. J Biol Chem 278(8):6153–6159. doi:10.1074/jbc.M209292200 CASPubMed Google Scholar
Schmidt M, Zantopf D, Kraft R, Kostka S, Preissner R, Kloetzel PM (1999) Sequence information within proteasomal prosequences mediates efficient integration of beta-subunits into the 20S proteasome complex. J Mol Biol 288(1):117–128. doi:10.1006/jmbi.1999.2660 CASPubMed Google Scholar
Shinde U, Inouye M (2000) Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin Cell Develop Biol 11(1):35–44. doi:10.1006/scdb.1999.0349 CAS Google Scholar
Arendt CS, Hochstrasser M (1999) Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J 18(13):3575–3585 CASPubMed CentralPubMed Google Scholar
Chen P, Hochstrasser M (1996) Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86(6):961–972 CASPubMed Google Scholar
Heink S, Fricke B, Ludwig D, Kloetzel PM, Kruger E (2006) Tumor cell lines expressing the proteasome subunit isoform LMP7E1 exhibit immunoproteasome deficiency. Cancer Res 66(2):649–652. doi:10.1158/0008-5472.CAN-05-2872 CASPubMed Google Scholar
Fricke B, Heink S, Steffen J, Kloetzel PM, Kruger E (2007) The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep 8(12):1170–1175. doi:10.1038/sj.embor.7401091 CASPubMed CentralPubMed Google Scholar
Sa-Moura B, Simoes AM, Fraga J, Fernandes H, Abreu IA, Botelho HM, Gomes CM, Marques AJ, Dohmen RJ, Ramos PC, Macedo-Ribeiro S (2013) Biochemical and biophysical characterization of recombinant yeast proteasome maturation factor ump1. Comput Struct Biotech J 7:e201304006. doi:10.5936/csbj.201304006 Google Scholar
Uekusa Y, Okawa K, Yagi-Utsumi M, Serve O, Nakagawa Y, Mizushima T, Yagi H, Saeki Y, Tanaka K, Kato K (2013) Backbone 1H, 13C, and 15N assignments of yeast Ump1, an intrinsically disordered protein that functions as a proteasome assembly chaperone. Biomol NMR Assign. doi:10.1007/s12104-013-9523-1 PubMed Google Scholar
Schmidt M, Haas W, Crosas B, Santamaria PG, Gygi SP, Walz T, Finley D (2005) The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12(4):294–303. doi:10.1038/nsmb914 CASPubMed Google Scholar
Dange T, Smith D, Noy T, Rommel PC, Jurzitza L, Cordero RJ, Legendre A, Finley D, Goldberg AL, Schmidt M (2011) Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem 286(50):42830–42839. doi:10.1074/jbc.M111.300178 CASPubMed CentralPubMed Google Scholar
Lopez AD, Tar K, Krugel U, Dange T, Ros IG, Schmidt M (2011) Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10. Mol Biol Cell 22(5):528–540. doi:10.1091/mbc.E10-04-0352 CASPubMed CentralPubMed Google Scholar
Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song W, Yu Y, Zhang XX, Huang HT, Miao S, Chen LB, Zhang ZH, Liang YN, Liu S, Cha H, Yang D, Zhai Y, Komatsu T, Tsuruta F, Li H, Cao C, Li W, Li GH, Cheng Y, Chiba T, Wang L, Goldberg AL, Shen Y, Qiu XB (2013) Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153(5):1012–1024. doi:10.1016/j.cell.2013.04.032 CASPubMed CentralPubMed Google Scholar
Guillaume B, Chapiro J, Stroobant V, Colau D, Van Holle B, Parvizi G, Bousquet-Dubouch MP, Theate I, Parmentier N, Van den Eynde BJ (2010) Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proc Natl Acad Sci USA 107(43):18599–18604. doi:10.1073/pnas.1009778107 CASPubMed CentralPubMed Google Scholar
Kloetzel PM, Ossendorp F (2004) Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16(1):76–81 CASPubMed Google Scholar
Rock KL, York IA, Goldberg AL (2004) Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 5(7):670–677. doi:10.1038/ni1089 CASPubMed Google Scholar
Griffin TA, Nandi D, Cruz M, Fehling HJ, Kaer LV, Monaco JJ, Colbert RA (1998) Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits. J Exp Med 187(1):97–104 CASPubMed CentralPubMed Google Scholar
Groettrup M, Standera S, Stohwasser R, Kloetzel PM (1997) The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc Natl Acad Sci USA 94(17):8970–8975 CASPubMed CentralPubMed Google Scholar
Heink S, Ludwig D, Kloetzel PM, Kruger E (2005) IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci USA 102(26):9241–9246. doi:10.1073/pnas.0501711102 CASPubMed CentralPubMed Google Scholar
Murata S, Takahama Y, Tanaka K (2008) Thymoproteasome: probable role in generating positively selecting peptides. Curr Opin Immunol 20(2):192–196. doi:10.1016/j.coi.2008.03.002 CASPubMed Google Scholar
Zaiss DM, Standera S, Holzhutter H, Kloetzel P, Sijts AJ (1999) The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett 457(3):333–338 CASPubMed Google Scholar
Preckel T, Fung-Leung WP, Cai Z, Vitiello A, Salter-Cid L, Winqvist O, Wolfe TG, Von Herrath M, Angulo A, Ghazal P, Lee JD, Fourie AM, Wu Y, Pang J, Ngo K, Peterson PA, Fruh K, Yang Y (1999) Impaired immunoproteasome assembly and immune responses in PA28−/− mice. Science 286(5447):2162–2165 CASPubMed Google Scholar
Belote JM, Zhong L (2009) Duplicated proteasome subunit genes in Drosophila and their roles in spermatogenesis. Heredity 103(1):23–31. doi:10.1038/hdy.2009.23 CASPubMed Google Scholar
Fu H, Doelling JH, Arendt CS, Hochstrasser M, Vierstra RD (1998) Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 149(2):677–692 CASPubMed CentralPubMed Google Scholar
Niewerth D, Kaspers GJ, Assaraf YG, van Meerloo J, Kirk CJ, Anderl J, Blank JL, van de Ven PM, Zweegman S, Jansen G, Cloos J (2014) Interferon-gamma-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. J Hematol Oncol 7(1):7. doi:10.1186/1756-8722-7-7 PubMed CentralPubMed Google Scholar
Tanaka K, Mizushima T, Saeki Y (2012) The proteasome: molecular machinery and pathophysiological roles. Biol Chem 393(4):217–234. doi:10.1515/hsz-2011-0285 CASPubMed Google Scholar
Effantin G, Rosenzweig R, Glickman MH, Steven AC (2009) Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits Rpn1 and Rpn2. J Mol Biol 386(5):1204–1211. doi:10.1016/j.jmb.2009.01.039 CASPubMed CentralPubMed Google Scholar
He J, Kulkarni K, da Fonseca PC, Krutauz D, Glickman MH, Barford D, Morris EP (2012) The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric alpha-helical rings. Structure 20(3):513–521. doi:10.1016/j.str.2011.12.015 CASPubMed Google Scholar
Sakata E, Bohn S, Mihalache O, Kiss P, Beck F, Nagy I, Nickell S, Tanaka K, Saeki Y, Forster F, Baumeister W (2012) Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc Natl Acad Sci USA 109(5):1479–1484. doi:10.1073/pnas.1119394109 CASPubMed CentralPubMed Google Scholar
Tian G, Park S, Lee MJ, Huck B, McAllister F, Hill CP, Gygi SP, Finley D (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18(11):1259–1267. doi:10.1038/nsmb.2147 CASPubMed CentralPubMed Google Scholar
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186–191. doi:10.1038/nature10774 CASPubMed CentralPubMed Google Scholar
Tomko RJ Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell 38(3):393–403. doi:10.1016/j.molcel.2010.02.035 CASPubMed CentralPubMed Google Scholar
Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN (2008) Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J Biol Chem 283(46):31813–31822. doi:10.1074/jbc.M805935200 CASPubMed CentralPubMed Google Scholar
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell 27(5):731–744. doi:10.1016/j.molcel.2007.06.033 CASPubMed CentralPubMed Google Scholar
Beckwith R, Estrin E, Worden EJ, Martin A (2013) Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA + unfoldase. Nat Struct Mol Biol 20(10):1164–1172. doi:10.1038/nsmb.2659 CASPubMed Google Scholar
Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T (2012) Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26S proteasome, by proteasome-dedicated chaperone Hsm3p. J Biol Chem 287(15):12172–12182. doi:10.1074/jbc.M112.345876 CASPubMed CentralPubMed Google Scholar
Le Tallec B, Barrault MB, Guerois R, Carre T, Peyroche A (2009) Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell 33(3):389–399. doi:10.1016/j.molcel.2009.01.010 PubMed Google Scholar
Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi SP, Finley D (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459(7248):866–870. doi:10.1038/nature08065 CASPubMed CentralPubMed Google Scholar
Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459(7248):861–865. doi:10.1038/nature08063 CASPubMed CentralPubMed Google Scholar
Saeki Y, Toh EA, Kudo T, Kawamura H, Tanaka K (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137(5):900–913. doi:10.1016/j.cell.2009.05.005 CASPubMed Google Scholar
Kaneko T, Hamazaki J, Iemura S, Sasaki K, Furuyama K, Natsume T, Tanaka K, Murata S (2009) Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137(5):914–925. doi:10.1016/j.cell.2009.05.008 CASPubMed Google Scholar
Park S, Li X, Kim HM, Singh CR, Tian G, Hoyt MA, Lovell S, Battaile KP, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D (2013) Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497(7450):512–516. doi:10.1038/nature12123 CASPubMed Google Scholar
Thompson D, Hakala K, DeMartino GN (2009) Subcomplexes of PA700, the 19 S regulator of the 26S proteasome, reveal relative roles of AAA subunits in 26S proteasome assembly and activation and ATPase activity. J Biol Chem 284(37):24891–24903. doi:10.1074/jbc.M109.023218 CASPubMed CentralPubMed Google Scholar
Barrault MB, Richet N, Godard C, Murciano B, Le Tallec B, Rousseau E, Legrand P, Charbonnier JB, Le Du MH, Guerois R, Ochsenbein F, Peyroche A (2012) Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci USA 109(17):E1001–E1010. doi:10.1073/pnas.1116538109 PubMed CentralPubMed Google Scholar
Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10(2):104–115. doi:10.1038/nrm2630 CASPubMed Google Scholar
Satoh T, Saeki Y, Hiromoto T, Wang YH, Uekusa Y, Yagi H, Yoshihara H, Yagi-Utsumi M, Mizushima T, Tanaka K, Kato K (2014) Structural basis for proteasome formation controlled by an assembly chaperone nas2. Structure 22(5):731–743. doi:10.1016/j.str.2014.02.014 CASPubMed Google Scholar
Hendil KB, Kriegenburg F, Tanaka K, Murata S, Lauridsen AM, Johnsen AH, Hartmann-Petersen R (2009) The 20S proteasome as an assembly platform for the 19S regulatory complex. J Mol Biol 394(2):320–328. doi:10.1016/j.jmb.2009.09.038 CASPubMed Google Scholar
Pathare GR, Nagy I, Bohn S, Unverdorben P, Hubert A, Korner R, Nickell S, Lasker K, Sali A, Tamura T, Nishioka T, Forster F, Baumeister W, Bracher A (2012) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA 109(1):149–154. doi:10.1073/pnas.1117648108 CASPubMed CentralPubMed Google Scholar
Lam YA, Xu W, DeMartino GN, Cohen RE (1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385(6618):737–740. doi:10.1038/385737a0 CASPubMed Google Scholar
Pathare GR, Nagy I, Sledz P, Anderson DJ, Zhou HJ, Pardon E, Steyaert J, Forster F, Bracher A, Baumeister W (2014) Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci USA 111(8):2984–2989. doi:10.1073/pnas.1400546111 CASPubMed CentralPubMed Google Scholar
Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A (2007) The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell 18(2):569–580. doi:10.1091/mbc.E06-07-0635 CASPubMed CentralPubMed Google Scholar
Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010) Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun 396(4):1048–1053. doi:10.1016/j.bbrc.2010.05.061 CASPubMed Google Scholar
Estrin E, Lopez-Blanco JR, Chacon P, Martin A (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21(9):1624–1635. doi:10.1016/j.str.2013.06.023 CASPubMed Google Scholar
Tomko RJ Jr, Hochstrasser M (2014) The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol Cell 53(3):433–443. doi:10.1016/j.molcel.2013.12.009 CASPubMed Google Scholar
Orlowski M, Wilk S (2000) Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 383(1):1–16. doi:10.1006/abbi.2000.2036 CASPubMed Google Scholar
Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Mol Biol 7(11):1062–1067. doi:10.1038/80992 CAS Google Scholar
Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615–623 CASPubMed Google Scholar
Kriegenburg F, Seeger M, Saeki Y, Tanaka K, Lauridsen AM, Hartmann-Petersen R, Hendil KB (2008) Mammalian 26S proteasomes remain intact during protein degradation. Cell 135(2):355–365. doi:10.1016/j.cell.2008.08.032 CASPubMed Google Scholar
Driscoll J, Goldberg AL (1990) The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. J Biol Chem 265(9):4789–4792 CASPubMed Google Scholar
Armon T, Ganoth D, Hershko A (1990) Assembly of the 26 S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity. J Biol Chem 265(34):20723–20726 CASPubMed Google Scholar
Bajorek M, Finley D, Glickman MH (2003) Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr Biol 13(13):1140–1144 CASPubMed Google Scholar
Fujimuro M, Takada H, Saeki Y, Toh-e A, Tanaka K, Yokosawa H (1998) Growth-dependent change of the 26S proteasome in budding yeast. Biochemical and biophysical research communications 251(3):818–823. doi:10.1006/bbrc.1998.9560 CASPubMed Google Scholar
Saunier R, Esposito M, Dassa EP, Delahodde A (2013) Integrity of the Saccharomyces cerevisiae Rpn11 protein is critical for formation of proteasome storage granules (PSG) and survival in stationary phase. PLoS ONE 8(8):e70357. doi:10.1371/journal.pone.0070357 CASPubMed CentralPubMed Google Scholar
Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K (2003) The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J 22(14):3557–3567. doi:10.1093/emboj/cdg349 CASPubMed CentralPubMed Google Scholar
Satoh K, Sasajima H, Nyoumura KI, Yokosawa H, Sawada H (2001) Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 40(2):314–319 CASPubMed Google Scholar
Bose S, Stratford FL, Broadfoot KI, Mason GG, Rivett AJ (2004) Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem J 378(Pt 1):177–184. doi:10.1042/BJ20031122 CASPubMed CentralPubMed Google Scholar
Guo X, Engel JL, Xiao J, Tagliabracci VS, Wang X, Huang L, Dixon JE (2011) UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc Natl Acad Sci USA 108(46):18649–18654. doi:10.1073/pnas.1113170108 CASPubMed CentralPubMed Google Scholar
Kajava AV, Gorbea C, Ortega J, Rechsteiner M, Steven AC (2004) New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J Struct Biol 146(3):425–430. doi:10.1016/j.jsb.2004.01.013 CASPubMed Google Scholar
Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, Walz T, Ploegh H, Finley D (2002) Multiple associated proteins regulate proteasome structure and function. Mol Cell 10(3):495–507 CASPubMed Google Scholar
Kleijnen MF, Roelofs J, Park S, Hathaway NA, Glickman M, King RW, Finley D (2007) Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14(12):1180–1188. doi:10.1038/nsmb1335 CASPubMed Google Scholar
Gorbea C, Goellner GM, Teter K, Holmes RK, Rechsteiner M (2004) Characterization of mammalian Ecm29, a 26 S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 279(52):54849–54861 CASPubMed Google Scholar
Park S, Kim W, Tian G, Gygi SP, Finley D (2011) Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 286(42):36652–36666. doi:10.1074/jbc.M111.285924 CASPubMed CentralPubMed Google Scholar
Akahane T, Sahara K, Yashiroda H, Tanaka K, Murata S (2013) Involvement of Bag6 and the TRC pathway in proteasome assembly. Nat Commun 4:2234. doi:10.1038/ncomms3234 PubMed Google Scholar
Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691 CASPubMed Google Scholar
Lehmann A, Janek K, Braun B, Kloetzel PM, Enenkel C (2002) 20 S proteasomes are imported as precursor complexes into the nucleus of yeast. J Mol Biol 317(3):401–413. doi:10.1006/jmbi.2002.5443 CASPubMed Google Scholar
Kremer M, Henn A, Kolb C, Basler M, Moebius J, Guillaume B, Leist M, Van den Eynde BJ, Groettrup M (2010) Reduced immunoproteasome formation and accumulation of immunoproteasomal precursors in the brains of lymphocytic choriomeningitis virus-infected mice. J Immunol 185(9):5549–5560. doi:10.4049/jimmunol.1001517 CASPubMed Google Scholar
Hoefer MM, Boneberg EM, Grotegut S, Kusch J, Illges H (2006) Possible tetramerisation of the proteasome maturation factor POMP/proteassemblin/hUmp1 and its subcellular localisation. Int J Biol Macromol 38(3–5):259–267 CASPubMed Google Scholar