Conn PM, Bowers CY (1996) A new receptor for growth hormone-release peptide. Science 273:923–920 ArticleCASPubMed Google Scholar
Geelissen SME, Beck IME, Darras VM, Kühn ER, van der Geyten S (2003) Distribution and regulation of chicken growth hormone secretagogue receptor isoforms. Gen Comp Endocrinol 134:167–174 ArticleCASPubMed Google Scholar
Chan C-B, Cheng CH (2004) Identification and functional characterization of two alternatively spliced growth hormone secretagogue receptor transcripts from the pituitary of black seabream Acanthopagrus schlegelii. Mol Cell Endocrinol 214:81–95. https://doi.org/10.1016/j.mce.2003.11.020 ArticleCASPubMed Google Scholar
Mary S, Fehrentz J-A, Damian M, Gaibelet G, Orcel H, Verdié P, Mouillac B, Martinez J et al (2013) Heterodimerization with its splice variant blocks the ghrelin receptor 1a in a non-signaling conformation: a study with a purified heterodimer assembled into lipid discs. J Biol Chem 288:24656–24665. https://doi.org/10.1074/jbc.M113.453423 ArticleCASPubMedPubMed Central Google Scholar
Chow KBS, Sun J, Chu KM et al (2012) The truncated ghrelin receptor polypeptide (GHS-R1b) is localized in the endoplasmic reticulum where it forms heterodimers with ghrelin receptors (GHS-R1a) to attenuate their cell surface expression. Mol Cell Endocrinol 348:247–254. https://doi.org/10.1016/j.mce.2011.08.034 ArticleCASPubMed Google Scholar
Borroto-Escuela DO, Brito I, Romero-Fernandez W, di Palma M, Oflijan J, Skieterska K, Duchou J, van Craenenbroeck K et al (2014) The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int J Mol Sci 15:8570–8590. https://doi.org/10.3390/ijms15058570 ArticleCASPubMedPubMed Central Google Scholar
Mei J, Pasternak GW (2002) Sigma1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 300:1070–1074 ArticleCASPubMed Google Scholar
McCracken KA, Bowen WD, de Costa BR, Matsumoto RR (1999) Two novel sigma receptor ligands, BD1047 and LR172, attenuate cocaine-induced toxicity and locomotor activity. Eur J Pharmacol 370:225–232 ArticleCASPubMed Google Scholar
Skuza G (1999) Effect of sigma ligands on the cocaine-induced convulsions in mice. Pol J Pharmacol 51:477–483 CASPubMed Google Scholar
Lever JR, Fergason-Cantrell EA, Watkinson LD, Carmack TL, Lord SA, Xu R, Miller DK, Lever SZ (2016) Cocaine occupancy of sigma 1 receptors and dopamine transporters in mice. Synapse 70:98–111. https://doi.org/10.1002/syn.21877 ArticleCASPubMed Google Scholar
Matsumoto RR, Hewett KL, Pouw B, Bowen WD, Husbands SM, Cao JJ, Hauck Newman A (2001) Rimcazole analogs attenuate the convulsive effects of cocaine: correlation with binding to sigma receptors rather than dopamine transporters. Neuropharmacology 41:878–886. https://doi.org/10.1016/S0028-3908(01)00116-2 ArticleCASPubMed Google Scholar
Marcellino D, Navarro G, Sahlholm K, Nilsson J, Agnati LF, Canela EI, Lluís C, Århem P et al (2010) Cocaine produces D2R-mediated conformational changes in the adenosine A(2A)R-dopamine D2R heteromer. Biochem Biophys Res Commun 394:988–992. https://doi.org/10.1016/j.bbrc.2010.03.104 ArticleCASPubMed Google Scholar
Hradsky J, Mikhaylova M, Karpova A, Kreutz MR, Zuschratter W. Super-resolution microscopy of the neuronal calcium-binding proteins Calneuron-1 and Caldendrin. Methods Mol Biol. 2013;963:147–69. https://doi.org/10.1007/978-1-62703-230-8_10 Google Scholar
Tesmer JJ, Berman DM, Gilman AG, Sprang SR (1997) Structure of RGS4 bound to AlF4-activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell 89:251–261 ArticleCASPubMed Google Scholar
van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725. https://doi.org/10.1016/j.jmb.2015.09.014 ArticleCASPubMed Google Scholar
Navarro G, Moreno E, Aymerich M, Marcellino D, McCormick PJ, Mallol J, Cortes A, Casado V et al (2010) Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci U S A 107:18676–18681. https://doi.org/10.1073/pnas.1008911107 ArticlePubMedPubMed Central Google Scholar
Grundmann M, Kostenis E (2015) Holistic methods for the analysis of cNMP effects. In: Handb. Exp. Pharmacol. pp 339–357
Borroto-Escuela DO, Narváez M, Wydra K, Pintsuk J, Pinton L, Jimenez-Beristain A, di Palma M, Jastrzębska J et al (2017) Cocaine self-administration specifically increases A2AR-D2R and D2R-sigma1R heteroreceptor complexes in the rat nucleus accumbens shell. Relevance for cocaine use disorder. Pharmacol Biochem Behav 155:24–31. https://doi.org/10.1016/j.pbb.2017.03.003 ArticleCASPubMed Google Scholar
Trifilieff P, Rives M-L, Urizar E, Piskorowski R, Vishwasrao H, Castrillon J, Schmauss C, Slättman M et al (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques 51:111–118. https://doi.org/10.2144/000113719 ArticleCASPubMedPubMed Central Google Scholar
Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF (2014) Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. Neurosci Discov 2:6 Article Google Scholar
Rodríguez-Muñoz M, Sánchez-Blázquez P, Herrero-Labrador R, Martínez-Murillo R, Merlos M, Vela JM, Garzón J. The σ1 receptor engages the redox-regulated HINT1 protein to bring opioid analgesia under NMDA receptor negative control. Antioxid Redox Signal. 2015 Apr 1;22(10):799–818. https://doi.org/10.1089/ars.2014.5993 Article Google Scholar
Sánchez-Blázquez P, Rodríguez-Muñoz M, Herrero-Labrador R, Burgueño J, Zamanillo D, Garzón J (2014) The calcium-sensitive Sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: implications in antinociception and psychotic diseases. Int J Neuropsychopharmacol 17:1–13. https://doi.org/10.1017/S1461145714000029 ArticleCAS Google Scholar
Menkel M, Terry P, Pontecorvo M, Katz JL, Witkin JM (1991) Selective sigma ligands block stimulant effects of cocaine. Eur J Pharmacol 201:251–252 ArticleCASPubMed Google Scholar
Barr JL, Deliu E, Brailoiu GC, Zhao P, Yan G, Abood ME, Unterwald EM, Brailoiu E (2015) Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways. Cell Calcium 58:196–207. https://doi.org/10.1016/j.ceca.2015.05.001 ArticleCASPubMedPubMed Central Google Scholar
Romieu P, Martin-Fardon R, Maurice T (2000) Involvement of the sigma1 receptor in the cocaine-induced conditioned place preference. Neuroreport 11:2885–2888 ArticleCASPubMed Google Scholar
Matsumoto RR, McCracken KA, Pouw B et al (2002) Involvement of sigma receptors in the behavioral effects of cocaine: evidence from novel ligands and antisense oligodeoxynucleotides. Neuropharmacology 42:1043–1055 ArticleCASPubMed Google Scholar
Matsumoto RR, Liu Y, Lerner M, Howard EW, Brackett DJ (2003) Sigma receptors: potential medications development target for anti-cocaine agents. Eur J Pharmacol 469:1–12 ArticleCASPubMed Google Scholar
Roman FJ, Pascaud X, Duffy O, Vauche D, Martin B, Junien JL (1989) Neuropeptide Y and peptide YY interact with rat brain sigma and PCP binding sites. Eur J Pharmacol 174:301–302 ArticleCASPubMed Google Scholar
Tam SW, Mitchell KN (1991) Neuropeptide Y and peptide YY do not bind to brain sigma and phencyclidine binding sites. Eur J Pharmacol 193:121–122 ArticleCASPubMed Google Scholar