Toll-Like Receptors: Linking Innate and Adaptive Immunity (original) (raw)
References
Janeway CA, Jr.: Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989, 54 Pt 1: 1–13. PubMedCAS Google Scholar
Janeway CA, Jr., Medzhitov R: Innate immune recognition. Annu Rev Immunol 2002, 20: 197–216. ArticlePubMedCAS Google Scholar
Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R: Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001, 2:947–950. ArticlePubMedCAS Google Scholar
Pasare C, Medzhitov R: Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003, 299:1033–1036. ArticlePubMedCAS Google Scholar
Poltorak A, He X, Smimova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998, 282:2085–2088. ArticlePubMedCAS Google Scholar
Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D: Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 1999, 189:615–625. ArticlePubMedCAS Google Scholar
Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S: Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999, 11:443–451. ArticlePubMedCAS Google Scholar
Alexopoulou L, Holt AC, Medzhitov R, Flavell RA: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001, 413:732–738. ArticlePubMedCAS Google Scholar
Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S: Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8. Science 2004. Google Scholar
Diebold SS, Kaisho T, Hemmi H, Akira S, Reis ESC: Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science 2004. Google Scholar
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, et al.: A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408:740–745. ArticlePubMedCAS Google Scholar
Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A: Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 2003, 198:513–520. ArticlePubMedCAS Google Scholar
Asca A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK: Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002, 277:15028–15034. ArticleCAS Google Scholar
Ohashi K, Burkart V, Flohe S, Kolb H: Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 2000, 164:558–561. PubMedCAS Google Scholar
Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H: HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 2002, 277:15107–15112. ArticlePubMedCAS Google Scholar
Bausinger H, Lipsker D, Ziylan U, Manie S, Briand JP, Cazenave JP, Muller S, Haeuw JF, Ravanat C, de la Salle H, et al.: Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 2002, 32:3708–3713. ArticlePubMedCAS Google Scholar
Gao B, Tsan MF: Recombinant Human Heat Shock Protein 60 Does Not Induce the Release of Tumor Necrosis Factor alpha from Murine Macrophages. J Biol Chem 2003, 278:22523–22529. ArticlePubMedCAS Google Scholar
Gao B, Tsan MF: Endotoxin contamination in recombinant human heat shock protein 70 (Hsp 70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem 2003, 278:174–179. ArticlePubMedCAS Google Scholar
Starr TK, Jameson SC, Hogquist KA: Positive and negative selection of T cells. Annu Rev Immunol 2003, 21:139–176. ArticlePubMedCAS Google Scholar
Goodnow CC, Crosbic J, Adelstein S, Lavoic TB, Smith-Gill SJ, Brink RA, Pritchard-Briscoe H, Wotherspoon JS, Loblay RH, Raphael K, et al.: Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 1988, 334:676–682. ArticlePubMedCAS Google Scholar
Hartley SB, Crosbie J, Brink R, Kantor AB, Basten A, Goodnow CC: Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 1991, 353:765–769. ArticlePubMedCAS Google Scholar
Cyster JG, Hartley SB, Goodnow CC: Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 1994, 371:389–395. ArticlePubMedCAS Google Scholar
Cyster JG, Goodnow CC: Antigen-induced exclusion from follicles and anergy are separate and complementary processes that influence peripheral B cell fate. Immunity 1995, 3:691–701. ArticlePubMedCAS Google Scholar
Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, et al.: Projection of an immunological self shadow within the thymus by the aire protein. Science 2002, 298:1395–1401. ArticlePubMedCAS Google Scholar
Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC: Aire regulates negative selection of organ-specific T cells. Nat Immunol 2003, 4:350–354. ArticlePubMedCAS Google Scholar
Peterson P, Nagamine K, Scott H, Heino M, Kudoh J, Shimizu N, Antonarakis SE, Krohn KJ: APECED: a monogenic autoimmune disease providing new clues to self-tolerance. Immunol Today 1998, 19:384–386. ArticlePubMedCAS Google Scholar
Punt JA, Osborne BA, Takahama Y, Sharrow SO, Singer A: Negative selection of CD4+CD8+ thymocytes by T cell recptor-induced apoptosis requires a costimulatory signal that can be provided by CD28. J Exp Med 1994, 179:709–713. ArticlePubMedCAS Google Scholar
Punt JA, Havran W, Abe R, Sarin A, Singer A: T cell receptor (TCR)-induced death of immature CD4+CD8+ thymocytes by two distinct mechanisms differing in their requirement for CD28 costimulation: implications for negative selection in the thymus. J Exp Med 1997, 186:1911–1922. ArticlePubMedCAS Google Scholar
Kishimoto H, Cai Z, Brunmark A, Jackson MR, Peterson PA, Sprent J: Differing roles for B7 and intercellular adhesion molecule-1 in negative selection of thymocytes. J Exp Med 1996, 184:531–537 ArticlePubMedCAS Google Scholar
Lenschow DJ, Walunas TL, Bluestone JA: CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996, 14:233–258. ArticlePubMedCAS Google Scholar
Liu Y, Janeway CA, Jr.: Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T cells. Proc Natl Acad Sci U S A 1992, 89:3845–3849 ArticlePubMedCAS Google Scholar
Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998, 392:245–252 ArticlePubMedCAS Google Scholar
Belz GT, Behrens GM, Smith CM, Miller JF, Jones C, Lejon K, Fathman CG, Mueller SN, Shortman K, Carbone FR, et al.: The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J Exp Med 2002, 196:1099–1104. ArticlePubMedCAS Google Scholar
Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC: Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001, 194:769–779. ArticlePubMedCAS Google Scholar
Menges M, Rossner S, Voigtlander C, Schindler H, Kukutsch NA, Bogdan C, Erb K, Schuler G, Lutz MB: Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J Exp Med 2002, 195:15–21. ArticlePubMedCAS Google Scholar
Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H: Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 2003, 18:605–617. ArticlePubMedCAS Google Scholar
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune discases. J Immunol 1995, 155:1151–1164. PubMedCAS Google Scholar
Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4:330–336. ArticlePubMedCAS Google Scholar
Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299:1057–1061. ArticlePubMedCAS Google Scholar
Asano M, Toda M, Sakaguchi N, Sakaguchi S: Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 1996, 184:387–396. ArticlePubMedCAS Google Scholar
Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG: A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997, 389:737–742. ArticlePubMedCAS Google Scholar
Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL: Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994, 265:1237–1240. ArticlePubMedCAS Google Scholar
Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, Barnes PF, Rollinghoff M, Boleskei PL, Wagner M, et al.: Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 2001, 291:1544–1547. ArticlePubMedCAS Google Scholar
Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ: Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000, 1:113–118. ArticlePubMedCAS Google Scholar
Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colomna M: Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 2004, 103:1433–1437. ArticlePubMedCAS Google Scholar
Steinman RM, Hawiger D, Nussenzweig MC: Tolerogenic dendritic cells. Annu Rev Immunol 2003, 21:685–711. ArticlePubMedCAS Google Scholar
Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S: Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 2001, 166:5688–5694. PubMedCAS Google Scholar
Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudelle BC, Shlomchik MJ, Marshak-Rothstein A: Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002, 416:603–607. ArticlePubMedCAS Google Scholar
Rui L, Vinuesa CG, Blasioli J, Goodnow CC: Resistance to CpG DNA-induced autoimmunity through tolerogenic B cell antigen receptor ERK signaling. Nat Immunol 2003, 4:594–600. ArticlePubMedCAS Google Scholar
Drakesmith H, Chain B, Beverley P: How can dendritic cells cause autoimmune disease? Immunol Today 2000, 21:214–217. ArticlePubMedCAS Google Scholar
Alonzi T, Fattori E, Lazzaro D, Costa P, Probert L, Kollias G, De Benedetti F, Poli V, Ciliberto G: Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 1998, 187:461–468. ArticlePubMedCAS Google Scholar
Kobayashi H, Ohshima S, Nishioka K, Yamaguchi N, Umeshita-Sasai M, Ishii T, Mima T, Kishimoto T, Kawase I, Saeki Y: Antigen induced arthritis (AIA) can be transferred by bone marrow transplantation: evidence that interleukin 6 is essential for induction of AIA. J Rheumatol 2002, 29:1176–1182. PubMedCAS Google Scholar
Ohshima S, Saeki Y, Mima T, Sasai M, Nishioka K, Nomura S, Kopf M, Katada Y, Tanaka T, Suemura M, et al.: Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc Natl Acad Sci U S A 1998, 95:8222–8226. ArticlePubMedCAS Google Scholar
Richards HB, Satoh M, Shaw M, Libert C, Poli V, Reeves WH: Interleukin 6 dependence of anti-DNA antibody production: evidence for two pathways of autoantibody formation in pristane-induced lupus. J Exp Med 1998, 188:985–990. ArticlePubMedCAS Google Scholar
Rose NR: The role of infection in the pathogenesis of autoimmune disease. Semin Immunol 1998, 10:5–13. ArticlePubMedCAS Google Scholar