Ubiquitination and TRAF signaling (original) (raw)
Ciechanover A, Heller H, Elias S et al. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci USA 1980; 77(3):1365–8. ArticlePubMedCAS Google Scholar
Hershko A, Ciechanover A, Rose IA. Resolution of the ATP-dependent proteolytic system from reticulocytes: A component that interacts with ATP. Proc Natl Acad Sci USA 1979; 76(7):3107–10. ArticlePubMedCAS Google Scholar
Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6(1):9–20. ArticlePubMedCAS Google Scholar
Jin J, Cardozo T, Lovering RC et al. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 2004; 18(21):2573–80. ArticlePubMedCAS Google Scholar
Cardozo T, Pagano M. The SCF ubiquitin ligase: Insights into a molecular machine. Nat Rev Mol Cell Biol 2004; 5(9):739–51. ArticlePubMedCAS Google Scholar
Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2001; 2(3):169–78. ArticlePubMedCAS Google Scholar
Huibregtse JM, Scheffner M, Beaudenon S et al. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 1995; 92(7):2563–7. ArticlePubMedCAS Google Scholar
King RW, Peters JM, Tugendreich S et al. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 1995; 81(2):279–88. ArticlePubMedCAS Google Scholar
Sudakin V, Ganoth D, Dahan A et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 1995; 6(2):185–97. PubMedCAS Google Scholar
Winston JT, Strack P, Beer-Romero P et al. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 1999; 13(3):270–83. PubMedCAS Google Scholar
Yaron A, Hatzubai A, Davis M et al. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 1998; 396(6711):590–4. ArticlePubMedCAS Google Scholar
Spencer E, Jiang J, Chen ZJ. Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP. Genes Dev 1999; 13(3):284–94. PubMedCAS Google Scholar
Carrano AC, Eytan E, Hershko A et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1(4):193–9. ArticlePubMedCAS Google Scholar
Scheffner M., Nuber U, Huibregtse JM. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 1995; 373(6509):81–3. ArticlePubMedCAS Google Scholar
Huibregtse JM, Scheffner M, Howley PM. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol 1993; 13(2):775–84. PubMedCAS Google Scholar
Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 1991; 10(13):4129–35. PubMedCAS Google Scholar
Scheffner M, Werness BA, Huibregtse JM et al. The E6 oncoprotein encoded by human ipapillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63(6):1129–36. ArticlePubMedCAS Google Scholar
Rotin D,, Staub O, Haguenauer-Tsapis R. Ubiquitination and endocytosis of plasma membrane proteins: Role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol 2000; 176(1):1–17. ArticlePubMedCAS Google Scholar
Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 2004; 1695(1–3):189–207. PubMedCAS Google Scholar
Silverman N, Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 2001; 15(18):2321–42. ArticlePubMedCAS Google Scholar
Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2(10):725–34. ArticlePubMedCAS Google Scholar
Lin L, DeMartino GN, Greene WC. Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 1998; 92(6):819–28. ArticlePubMedCAS Google Scholar
Palombella VJ, Rando OJ, Goldberg AL et al. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994; 78(5):773–85. ArticlePubMedCAS Google Scholar
Waterfield MR, Zhang M, Norman LP et al. NF-kappaB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol Cell 2003; 11(3):685–94. ArticlePubMedCAS Google Scholar
Deng L, Chen Z. Role of ubiquitin in NF-kB signaling. In: Beyaert R, ed. Nuclear Factor kB. Regulation and Role in Disease. Dordrecht/Boston/London: Kluwer, 2003;139–160. Google Scholar
Zheng N, Schulman BA, Song L et al. Structure of the Cul1-Rbx1-F boxSkp2 SCF ubiquitin ligase complex. Nature 2002; 416(6882):703–9. ArticlePubMedCAS Google Scholar
Wu G, Xu G, Schulman BA et al. Structure of a beta-TrCP1-Skp1-beta-catenin complex: Destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 2003; 11(6):1445–56. ArticlePubMedCAS Google Scholar
Chung JY, Park YC, Ye H et al. All TRAFs are not created equal: Common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 2002; 115(Pt 4):679–88. PubMedCAS Google Scholar
Rothe M, Wong SC, Henzel WJ et al. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994; 78(4):681–92. ArticlePubMedCAS Google Scholar
Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J 1996; 15(22):6189–96. PubMedCAS Google Scholar
Kelliher MA, Grimm S, Ishida Y et al. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 1998; 8(3):297–303. ArticlePubMedCAS Google Scholar
Yeh WC, Shahinian A, Speiser D et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997; 7(5):715–25. ArticlePubMedCAS Google Scholar
Tada K Okazaki T, Sakon S et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J Biol Chem 2001; 276(39):36530–4. ArticlePubMedCAS Google Scholar
Dunne A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: Signal transduction during inflammation and host defense. Sci STKE 2003; 2003(171):re3. ArticlePubMed Google Scholar
Naito A, Azuma S, Tanaka S et al. Severe osteoptrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999; 4(6):353–62. ArticlePubMedCAS Google Scholar
Lomaga MA, Yeh WC, Sarosi I et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999; 13(8):1015–24. PubMedCAS Google Scholar
Kobayashi T, Walsh PT, Walsh MC et al. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 2003; 19(3):353–63. ArticlePubMedCAS Google Scholar
Akiyama T, Maeda S, Yamane S et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 2005; 308(5719):248–51. ArticlePubMedCAS Google Scholar
Deng L, Wang C, Spencer E et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000: 103(2):351–61. ArticlePubMedCAS Google Scholar
Wang C, Deng L, Hong M et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001; 412(6844):346–51. ArticlePubMedCAS Google Scholar
Abbott DW, Wilkins A, Asara JM et al. The Crohn’s disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol 2004; 14(24):2217–27. ArticlePubMedCAS Google Scholar
Sun L, Deng L, Ea CK et al. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 2004; 14(3):289–301. ArticlePubMedCAS Google Scholar
Zhou H, Wertz I, O’Rourke K et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 2004; 427(6970):167–71. ArticlePubMedCAS Google Scholar
Huang TT, Wuerzberger-Davis SM, Wu ZH et al. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 2003; 115(5):565–76. ArticlePubMedCAS Google Scholar
Kovalenko A, Chable-Bessia C, Cantarella G et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424(6950):801–5. ArticlePubMedCAS Google Scholar
Brummelkamp TR, Nijman SM, Dirac AM et al. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424(6950):797–801. ArticlePubMedCAS Google Scholar
Tang ED, Wang CY, Xiong Y et al. A role for NF-kappaB essential modifier/IkappaB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkappaB kinase complex by tumor necrosis factor-alpha. J Biol Chem 2003; 278(39):37297–305. ArticlePubMedCAS Google Scholar
Shi CS, Kehrl JH. Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem 2003; 278(17):15429–34. ArticlePubMedCAS Google Scholar
Habelhah H, Takahashi S, Cho SG et al. Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J 2004; 23(2):322–32. ArticlePubMedCAS Google Scholar
Trompouki E, Hatzivassiliou E, Tsichritzis T et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424(6950):793–6. ArticlePubMedCAS Google Scholar
Kanayama A, Seth RB, Sun L et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15(4):535–48. ArticlePubMedCAS Google Scholar
Legler DF, Micheau O, Doucey MA et al. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 2003; 18(5):655–64. ArticlePubMedCAS Google Scholar
Wertz IE, O’Rourke KM, Zhou H et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430(7000):694–9. ArticlePubMedCAS Google Scholar
Xia ZP, Chen ZJ. TRAF2: A double-edged sword? Sci STKE 2005; 2005(272): pe7. Google Scholar
Grech AP, Amesbury M, Chan T et al. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 2004; 21(5):629–42. ArticlePubMedCAS Google Scholar
Hostager BS, Haxhinasto SA, Rowland SL et al. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003; 278(46):45382–90. ArticlePubMedCAS Google Scholar
Brown KD, Hostager BS, Bishop GA. Regulation of TRAF2 signaling by self-induced degradation. J Biol Chem 2002; 277(22):19433–8. ArticlePubMedCAS Google Scholar
Li X, Yang Y, Ashwell JD. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 2002; 416(6878):345–7. ArticlePubMed Google Scholar
Hsu H, Shu HB, Pan MG et al. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996; 84(2):299–308. ArticlePubMedCAS Google Scholar
Cao Z, Xiong J, Takeuchi M et al. TRAF6 is a signal transducer for interleukin-1. Nature 1996; 383(6599):443–6. ArticlePubMedCAS Google Scholar
Baud V, Liu ZG, Bennett B et al. Signaling by proinflammatory cytokines: Oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev 1999; 13(10):1297–308. PubMedCAS Google Scholar
Kobayashi N, Kadono Y, Naito A et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 2001; 20(6):1271–80. ArticlePubMedCAS Google Scholar
Takatsuna H, Kato H, Gohda J et al. Identification of TIFA as an adapter protein that links tumor necrosis factor receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-associated kinase-1 (IRAK-1) in IL-1 receptor signaling. J Biol Chem 2003; 278(14):12144–50. ArticlePubMedCAS Google Scholar
Ea CK, Sun L, Inoue J et al. TIFA activates IkappaB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proc Natl Acad Sci USA 2004; 101(43):15318–23. ArticlePubMedCAS Google Scholar
Monks CR, Kupfer H, Tamir I et al. Selective modulation of protein kinase C-theta during T-cell activation. Nature 1997; 385(6611):83–6. ArticlePubMedCAS Google Scholar
van Oers NS, Chen ZJ. Cell biology. Kinasing and clipping down the NF-kappa B trail. Science 2005; 308(5718):65–6. ArticlePubMedCAS Google Scholar
Thome M, Tschopp J. TCR-induced NF-kappaB activation: A crucial role for Carmal, Bcl10 and MALT1. Trends Immunol 2003; 24(8):419–24. ArticlePubMedCAS Google Scholar
Arenzana-Seisdedos F, Turpin P, Rodriguez M et al. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J Cell Sci 1997; 110(Pt 3): 369–78. PubMedCAS Google Scholar
Chiao PJ, Miyamoto S, Verma IM. Autoregulation of I kappa B alpha activity. Proc Natl Acad Sci USA 1994; 91(1):28–32. ArticlePubMedCAS Google Scholar
Sun SC, Ganchi PA, Ballard DW et al. NF-kappa B controls expression of inhibitor I kappa B alpha: Evidence for an inducible autoregulatory pathway. Science 1993; 259(5103):1912–5. ArticlePubMedCAS Google Scholar
Bignell GR, Warren W, Seal S et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 2000; 25(2):160–5. ArticlePubMedCAS Google Scholar
Reiley W, Zhang M, Wu X et al. Regulation of the deubiquitinating enzyme CYLD by IkappaB kinase gamma-dependent phosphorylation. Mol Cell Biol 2005; 25(10)3886–95. ArticlePubMedCAS Google Scholar
Reiley W, Zhang M, Sun SC. Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem 2004; 279(53):55161–7. ArticlePubMedCAS Google Scholar
Dixit VM, Green S, Sarma V et al. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem 1990; 265(5):2973–8. PubMedCAS Google Scholar
Opipari Jr AW, Hu HM, Yabkowitz R et al. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 1992; 267(18):12424–7. PubMedCAS Google Scholar
Lee EG, Boone DL, Chai S et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289(5488):2350–4. ArticlePubMedCAS Google Scholar
Boone DL, Turer EE, Lee EG et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5(10):1052–60. ArticlePubMedCAS Google Scholar
Evans PC, Ovaa H, Hamon M et al. Zinc-finger protein A20 a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 2004; 378(Pt 3):727–34. ArticlePubMedCAS Google Scholar
Yamaguchi K, Shirakabe K, Shibuya H et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995; 270(5244):2008–11. ArticlePubMedCAS Google Scholar
Ninomiya-Tsuji J, Kishimoto K, Hiyama A et al. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398(6724):252–6. ArticlePubMedCAS Google Scholar
Ninomiya-Tsuji J, Kajino T, Ono K et al. A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem 2003; 278(20):18485–90. ArticlePubMedCAS Google Scholar
Takaesu G, Surabhi RM, Park KJ et al. TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol 2003; 326(1):105–15. ArticlePubMedCAS Google Scholar
Vidal S, Khush RS, Leulier F et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappab-dependent innate immune responses. Genes Dev 2001; 15(15):1900–12. ArticlePubMedCAS Google Scholar
Chen W, White MA, Cobb MH. Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway. J Biol Chem 2002; 277(51):49105–10. ArticlePubMedCAS Google Scholar
Silverman N, Zhou R, Erlich RL et al. Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol Chem 2003; 278(49):48928–34. ArticlePubMedCAS Google Scholar
Shibuya H, Yamaguchi K, Shirakabe K et al. TAB1: An activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 1996; 272(5265):1179–82. ArticlePubMedCAS Google Scholar
Takaesu G, Kishida S, Hiyama A et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 2000; 5(4):649–58. ArticlePubMedCAS Google Scholar
Ishitani T, Takaesu G, Ninomiya-Tsuji J et al. Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J 2003; 22(23):6277–88. ArticlePubMedCAS Google Scholar
Cheung PC, Nebreda AR, Cohen P. TAB3, a new binding partner of the protein kinase TAK1. Biochem J 2004; 378(Pt 1):27–34. ArticlePubMedCAS Google Scholar
a.Zhou R, Silverman N, Hong M et al. The role of ubiquitnation in Drosophila innate immunity. J Biol Chem 2005; Epub ahead of print]. Google Scholar
Sanjo H, Takeda K, Tsujimura T et al. TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol Cell Biol 2003; 23(4):1231–8. ArticlePubMedCAS Google Scholar
Cha GH, Cho KS, Lee JH et al. Discrete functions of TRAF1 and TRAF2 in Drosophila melanogaster mediated by c-Jun N-terminal kinase and NF-kappaB-dependent signaling pathways. Mol Cell Biol 2003; 23(22):7982–91. ArticlePubMedCAS Google Scholar
Kishimoto K, Matsumoto K, Ninomiya-Tsuji J. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J Biol Chem 2000; 275(10):7359–64. ArticlePubMedCAS Google Scholar
Sakurai H, Miyoshi H, Mizukami J et al. Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett 2000; 474(2–3):141–5. ArticlePubMedCAS Google Scholar
Komatsu Y, Shibuya H, Takeda N et al. Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mech Dev 2002; 119(2):239–49. ArticlePubMedCAS Google Scholar
Huang Q, Yang J, Lin Y et al. Differential regulation of interleukin 1 receptor and Toll-like receptors signaling by MEKK3. Nat Immunol 2004; 5(1):98–103. ArticlePubMedCAS Google Scholar
Yang J, Lin Y, Guo Z et al. The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2001; 2(7):620–4. ArticlePubMedCAS Google Scholar
Xu LG, Li LY, Shu HB. TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. J Biol Chem 2004; 279(17):17278–82. ArticlePubMedCAS Google Scholar
Tobiume K, Matsuzawa A, Takahashi T et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2001; 2(3):222–8. ArticlePubMedCAS Google Scholar
Nishitoh H, Saitoh M, Mochida Y et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 1998; 2(3):389–95. ArticlePubMedCAS Google Scholar
Matsuzawa A, Saegusa K, Noguchi T et al. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 2005; 6(6):587–92. ArticlePubMedCAS Google Scholar
Kawai T, Sato S, Ishii KJ et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 2004; 5(10):1061–8. ArticlePubMedCAS Google Scholar
Honda K, Yanai H, Mizutani T et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci USA 2004; 101(43):15416–21. ArticlePubMedCAS Google Scholar
Uematsu S, Sato S, Yamamoto M et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7-and TLR9-mediated interferon-{alpha} induction. J Exp Med 2005; 201(6):915–23. ArticlePubMedCAS Google Scholar