Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177:512–524 ArticleCASPubMedPubMed Central Google Scholar
Brandner JM, Schulzke JD (2015) Hereditary barrier-related diseases involving the tight junction: lessons from skin and intestine. Cell Tissue Res 360:723–748 ArticlePubMed Google Scholar
Madara JL, Stafford J (1989) Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 83:724–727 ArticleCASPubMedPubMed Central Google Scholar
Quiding M, Nordstrom I, Kilander A et al (1991) Intestinal immune responses in humans: oral cholera vaccination induces strong intestinal antibody responses and interferon-gamma production and evokes local immunological memory. J Clin Invest 88:143–148 ArticleCASPubMedPubMed Central Google Scholar
Cerf-Bensussan N, Quaroni A, Kurnick JT et al (1984) Intraepithelial lymphocytes modulate Ia expression by intestinal epithelial cells. J Immunol 132:2244–2252 CASPubMed Google Scholar
Mayer L, Shlien R (1987) Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med 166:1471–1483 ArticleCASPubMed Google Scholar
Panja A, Goldberg S, Eckmann L et al (1998) The regulation and functional consequence of proinflammatory cytokine binding on human intestinal epithelial cells. J Immunol 161:3675–3684 CASPubMed Google Scholar
Taylor CT, Dzus AL, Colgan SP (1998) Autocrine regulation of intestinal epithelial permeability induced by hypoxia: role for basolateral release of tumor necrosis factor-a (TNF-a). Gastroenterology 114:657–668 ArticleCASPubMed Google Scholar
Demoulin JB, Renauld JC (1998) Signalling by cytokines interacting with the interleukin-2 receptor gamma chain. Cytokines Cell Mol Ther 4:243–256 CASPubMed Google Scholar
Zurawski SM, Vega FJ, Huyghe B et al (1993) Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J 12:2663–2670 CASPubMedPubMed Central Google Scholar
Kominsky DJ, Campbell EL, Ehrentraut SF et al (2014) IFN-gamma-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia. J Immunol 192:1267–1276 ArticleCASPubMed Google Scholar
Commins S, Steinke JW, Borish L (2008) The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol 121:1108–1111 ArticleCASPubMed Google Scholar
Denning TL, Campbell NA, Song F et al (2000) Expression of IL-10 receptors on epithelial cells from the murine small and large intestine. Int Immunol 12:133–139 ArticleCASPubMed Google Scholar
Colgan SP, Parkos CA, Matthews JB et al (1994) Interferon-γ induces a surface phenotype switch in intestinal epithelia: downregulation of ion transport and upregulation of immune accessory ligands. Am J Physiol 267:C402–C410 CASPubMed Google Scholar
Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265 ArticleCASPubMed Google Scholar
Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109 ArticlePubMedCAS Google Scholar
Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772 ArticleCASPubMed Google Scholar
Abraham C, Cho JH (2009) Inflammatory Bowel Disease. N Eng J Med 361:2066–2076 ArticleCAS Google Scholar
Mankertz J, Schulzke JD (2007) Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol 23:379–383 ArticleCASPubMed Google Scholar
Koch S, Nusrat A (2012) The life and death of epithelia during inflammation: lessons learned from the gut. Annu Rev Pathol 7:35–60 ArticleCASPubMed Google Scholar
Mankertz J, Tavalali S, Schmitz H et al (2000) Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci 113:2085–2090 CASPubMed Google Scholar
Furuse M, Hirase T, Itoh M et al (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788 ArticleCASPubMed Google Scholar
Nava P, Koch S, Laukoetter MG et al (2010) Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity 32:392–402 ArticleCASPubMedPubMed Central Google Scholar
Zund G, Madara JL, Dzus AL et al (1996) Interleukin-4 and interleukin-13 differentially regulate epithelial chloride secretion. J Biol Chem 271:7460–7464 ArticleCASPubMed Google Scholar
Berin MC, Yang P-C, Ciok L et al (1999) Role of IL-4 in macromolecular transport across human intestinal epithelium. Am J Physiol (Cell Physiol) 276:C1046–C1052 CAS Google Scholar
Yu LC, Yang PC, Berin MC et al (2001) Enhanced transepithelial antigen transport in intestine of allergic mice is mediated by IgE/CD23 and regulated by interleukin-4. Gastroenterology 121:370–381 ArticleCASPubMed Google Scholar
Al-Sadi R, Ye D, Boivin M et al (2014) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9:e85345 ArticlePubMedPubMed CentralCAS Google Scholar
Suzuki T, Yoshinaga N, Tanabe S (2011) Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 286:31263–31271 ArticleCASPubMedPubMed Central Google Scholar
Grivennikov S, Karin E, Terzic J et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113 ArticleCASPubMedPubMed Central Google Scholar
Kuhn KA, Manieri NA, Liu TC et al (2014) IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS One 9:e114195 ArticlePubMedPubMed CentralCAS Google Scholar
Madsen KL, Malfair D, Gray D et al (1999) Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis 5:262–270 ArticleCASPubMed Google Scholar
Colgan SP, Hershberg RM, Furuta GT et al (1999) Ligation of intestinal epithelial CD1d induces bioactive IL-10: critical role of the cytoplasmic tail in autocrine signaling. Proc Natl Acad Sci USA 96:13938–13943 ArticleCASPubMedPubMed Central Google Scholar
Arrieta MC, Madsen K, Doyle J et al (2009) Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 58:41–48 ArticleCASPubMed Google Scholar
Ito S, Ansari P, Sakatsume M et al (1999) Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma-induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 93:1456–1463 CASPubMed Google Scholar
Liang SC, Tan XY, Luxenberg DP et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279 ArticleCASPubMedPubMed Central Google Scholar
Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S et al (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–970 ArticleCASPubMed Google Scholar
Takatori H, Kanno Y, Watford WT et al (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206:35–41 ArticleCASPubMedPubMed Central Google Scholar
Cella M, Fuchs A, Vermi W et al (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725 ArticleCASPubMed Google Scholar
Kotenko SV, Izotova LS, Mirochnitchenko OV et al (2001) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 166:7096–7103 ArticleCASPubMed Google Scholar
Sugimoto K, Ogawa A, Mizoguchi E et al (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118:534–544 CASPubMedPubMed Central Google Scholar
Xie MH, Aggarwal S, Ho WH et al (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 275:31335–31339 ArticleCASPubMed Google Scholar
Zheng Y, Valdez PA, Danilenko DM et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289 ArticleCASPubMed Google Scholar
Nagalakshmi ML, Rascle A, Zurawski S et al (2004) Interleukin-22 activates STAT3 and induces IL-10 by colon epithelial cells. Int Immunopharmacol 4:679–691 ArticleCASPubMed Google Scholar
Brand S, Beigel F, Olszak T et al (2006) IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 290:G827–G838 ArticleCASPubMed Google Scholar
Bensancon F, Przewlocki G, Baro I et al (1994) Interferon-g downregulates CFTR gene expression in epithelial cells. Am J Physiol 267:C1398–C1404 Google Scholar
Rocha F, Musch MW, Lishanskiy L et al (2001) IFN-gamma downregulates expression of Na(+)/H(+) exchangers NHE2 and NHE3 in rat intestine and human Caco-2/bbe cells. Am J Physiol Cell Physiol 280:C1224–C1232 CASPubMed Google Scholar
Sugi K, Musch MW, Field M et al (2001) Inhibition of Na+, K+-ATPase by interferon gamma down-regulates intestinal epithelial transport and barrier function. Gastroenterology 120:1393–1403 ArticleCASPubMed Google Scholar
Asfaha S, MacNaughton WK, Appleyard CB et al (2001) Persistent epithelial dysfunction and bacterial translocation after resolution of intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 281:G635–G644 CASPubMed Google Scholar
Colgan SP, Resnick MB, Parkos CA et al (1994) IL-4 directly modulates function of a model human intestinal epithelium. J Immunol 153:2122–2129 CASPubMed Google Scholar
Ceponis PJ, Botelho F, Richards CD et al (2000) Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement. J Biol Chem 275:29132–29137 ArticleCASPubMed Google Scholar
Gauchat JF, Schlagenhauf E, Feng NP et al (1997) A novel 4-kb interleukin-13 receptor alpha mRNA expressed in human B, T, and endothelial cells encoding an alternate type-II interleukin- 4/interleukin-13 receptor. Eur J Immunol 27:971–978 ArticleCASPubMed Google Scholar
Miloux B, Laurent P, Bonnin O et al (1997) Cloning of the human IL-13R alpha1 chain and reconstitution with the IL4R alpha of a functional IL-4/IL-13 receptor complex. FEBS Lett 401:163–166 ArticleCASPubMed Google Scholar
Keely SJ, Uribe JM, Barrett KE (1998) Carbachol stimulates transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T84 cells. Implications for carbachol-stimulated chloride secretion. J Biol Chem 273:27111–27117 ArticleCASPubMed Google Scholar
Marques R, Boneca IG (2011) Expression and functional importance of innate immune receptors by intestinal epithelial cells. Cell Mol Life Sci 68:3661–3673 ArticleCASPubMed Google Scholar
Lee J, Mo JH, Katakura K et al (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8:1327–1336 ArticleCASPubMed Google Scholar
Gewirtz AT, Navas TA, Lyons S et al (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885 ArticleCASPubMed Google Scholar
Lee J, Gonzales-Navajas JM, Raz E (2008) The, “polarizing-tolerizing” mechanism of intestinal epithelium: its relevance to colonic homeostasis. Semin Immunopathol 30:3–9 ArticlePubMed Google Scholar
Haller D, Bode C, Hammes WP et al (2000) Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47:79–87 ArticleCASPubMedPubMed Central Google Scholar
Vijay-Kumar M, Sanders CJ, Taylor RT et al (2007) Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 117:3909–3921 CASPubMedPubMed Central Google Scholar
He B, Xu W, Santini PA et al (2007) Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26:812–826 ArticleCASPubMed Google Scholar
Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9:480–490 ArticleCASPubMedPubMed Central Google Scholar
Lee HC, Ziegler SF (2007) Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFkappaB. Proc Natl Acad Sci USA 104:914–919 ArticleCASPubMedPubMed Central Google Scholar
Zeuthen LH, Fink LN, Frokiaer H (2008) Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology 123:197–208 CASPubMedPubMed Central Google Scholar
Taylor BC, Zaph C, Troy AE et al (2009) TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J Exp Med 206:655–667 ArticleCASPubMedPubMed Central Google Scholar
Shang L, Fukata M, Thirunarayanan N et al (2008) Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology 135:529–538 ArticleCASPubMedPubMed Central Google Scholar
Izadpanah A, Dwinell MB, Eckmann L et al (2001) Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 280:G710–G719 CASPubMed Google Scholar
Sierro F, Dubois B, Coste A et al (2001) Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci USA 98:13722–13727 ArticleCASPubMedPubMed Central Google Scholar
Sibartie S, O’Hara AM, Ryan J et al (2009) Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria. BMC Immunol 10:54 ArticlePubMedPubMed CentralCAS Google Scholar
Bahrami B, Macfarlane S, Macfarlane GT (2011) Induction of cytokine formation by human intestinal bacteria in gut epithelial cell lines. J Appl Microbiol 110:353–363 ArticleCASPubMed Google Scholar
Neish AS, Gewirtz AT, Zeng H et al (2000) Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289:1560–1563 ArticleCASPubMed Google Scholar
Duerr RH, Taylor KD, Brant SR et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463 ArticleCASPubMedPubMed Central Google Scholar
Zaph C, Du Y, Saenz SA et al (2008) Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J Exp Med 205:2191–2198 ArticleCASPubMedPubMed Central Google Scholar
Wedebye Schmidt EG, Larsen HL, Kristensen NN et al (2013) TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis. Inflamm Bowel Dis 19:1567–1576 ArticlePubMed Google Scholar
Westendorf AM, Fleissner D, Groebe L et al (2009) CD4+ Foxp3+ regulatory T cell expansion induced by antigen-driven interaction with intestinal epithelial cells independent of local dendritic cells. Gut 58:211–219 ArticleCASPubMed Google Scholar
Hershberg RM, Cho DH, Youakim A et al (1998) Highly polarized HLA class II antigen processing and presentation by human intestinal epithelial cells. J Clin Invest 102:792–803 ArticleCASPubMedPubMed Central Google Scholar
Hershberg RM, Mayer LF (2000) Antigen processing and presentation by intestinal epithelial cells—polarity and complexity. Immunol Today 21:123–128 ArticleCASPubMed Google Scholar
Hershberg RM, Framson PE, Cho DH et al (1997) Intestinal epithelial cells use two distinct pathways for HLA class II antigen processing. J Clin Invest 100:204–215 ArticleCASPubMedPubMed Central Google Scholar
Framson PE, Cho DH, Lee LY et al (1999) Polarized expression and function of the costimulatory molecule CD58 on human intestinal epithelial cells. Gastroenterology 116:1054–1062 ArticleCASPubMed Google Scholar
Balk SP, Burke S, Polischuk JE et al (1994) b2-microglobulin-independent MHC class Ib molecule expressed by human intestinal epithelium. Science 265:259–262 ArticleCASPubMed Google Scholar
Colgan SP, Morales VM, Madara JL et al (1996) IFN-g modulates CD1d expression on intestinal epithelia. Am J Physiol 271:C276–C283 CASPubMed Google Scholar
Zeissig S, Blumberg RS (2013) Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr Opin Immunol 25:690–696 ArticleCASPubMed Google Scholar
Elewaut D, Kronenberg M (2000) Molecular biology of NK T cell specificity and development. Semin Immunol 12:561–568 ArticleCASPubMed Google Scholar
Sumagin R, Parkos CA (2015) Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration. Tissue Barriers 3:e969100 ArticlePubMedCAS Google Scholar
Phalipon A, Sansonetti PJ (2007) Shigella’s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 85:119–129 ArticleCASPubMed Google Scholar
Jung HC, Eckmann L, Yang SK et al (1995) A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 95:55–65 ArticleCASPubMedPubMed Central Google Scholar
Vallee S, Laforest S, Fouchier F et al (2004) Cytokine-induced upregulation of NF-kappaB, IL-8, and ICAM-1 is dependent on colonic cell polarity: implication for PKCdelta. Exp Cell Res 297:165–185 ArticleCASPubMed Google Scholar
Olsen I, Hajishengallis G (2015) Major neutrophil functions subverted by Porphyromonas gingivalis. J Oral Microbiol. doi:10.3402/jom.v8.30936eCollection 2016 Google Scholar
Parkos CA, Delp C, Arnaout MA et al (1991) Neutrophil migration across a cultured intestinal epithelium: dependence on a CD11b/CD18—mediated event and enhanced efficiency in the physiologic direction. J Clin Invest 88:1605–1612 ArticleCASPubMedPubMed Central Google Scholar
Huang GT, Eckmann L, Savidge TC et al (1996) Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM)-1) expression and neutrophil adhesion. J Clin Invest 98:572–583 ArticleCASPubMedPubMed Central Google Scholar
Parkos CA, Colgan SP, Diamond MS et al (1996) Expression and polarization of intercellular adhesion molecule-1 on human intestinal epithelia: consequences for CD11b/18-mediated interactions with neutrophils. Mol Med 2:489–505 CASPubMedPubMed Central Google Scholar
Colgan SP, Parkos CA, Delp C et al (1993) Neutrophil migration across cultured intestinal epithelial monolayers is modulated by epithelial exposure to interferon-gamma in a highly polarized fashion. J Cell Biol 120:785–795 ArticleCASPubMed Google Scholar
Parkos CA, Colgan SP, Liang A et al (1996) CD 47 mediates post-adhesive events required for neutrophil migration across polarized intestinal epithelia. J Cell Biol 132:437–450 ArticleCASPubMed Google Scholar
Murata Y, Kotani T, Ohnishi H et al (2014) The CD47-SIRPalpha signalling system: its physiological roles and therapeutic application. J Biochem 155:335–344 ArticleCASPubMed Google Scholar