Ikoma A, Steinhoff M, Ständer S et al (2006) The neurobiology of itch. Nat Rev Neurosci 7:535–547 ArticleCASPubMed Google Scholar
Ständer S, Weisshaar E, Mettang T et al (2007) Clinical classification of itch: a position paper of the International Forum for the Study of Itch. Acta Derm Venereol 87:291–294 ArticlePubMed Google Scholar
Von Frey M (1922) Zur Physiologie der Juckempfindung. Arch Neerl Physiol 142–145
Lewis T, Grant RT, Marvin HM (1927) Vascular reactions of the skin to injury. Part X The intervention of a chemical stimulus illustrated especially by the flare. The response to faradism - Google Search. Heart 139–160
Norrsell U, Finger S, Lajonchere C (1999) Cutaneous sensory spots and the “law of specific nerve energies”: history and development of ideas. Brain Res Bull 48:457–465 ArticleCASPubMed Google Scholar
Sun Y-G, Zhao Z-Q, Meng X-L et al (2009) Cellular basis of itch sensation. Science 325:1531–1534 ArticleCASPubMed Google Scholar
Liu Q, Tang Z, Surdenikova L et al (2009) Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139:1353–1365 ArticlePubMedPubMed Central Google Scholar
Wilson SR, Gerhold KA, Bifolck-Fisher A et al (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14:595–602 ArticleCASPubMedPubMed Central Google Scholar
Schmelz M, Schmidt R, Weidner C et al (2003) Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89:2441–2448 ArticleCASPubMed Google Scholar
Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204 ArticleCASPubMed Google Scholar
MacDermot HE (1927) The blood vessels of the human skin and their responses. Can Med Assoc J 17:1574 PubMed Central Google Scholar
Greaves MW, Davies MG (1982) Histamine receptors in human skin: indirect evidence. Br J Dermatol 107(Suppl):101–105 ArticleCASPubMed Google Scholar
Inagaki N, Nakamura N, Nagao M et al (1999) Participation of histamine H1 and H2 receptors in passive cutaneous anaphylaxis-induced scratching behavior in ICR mice. Eur J Pharmacol 367:361–371 ArticleCASPubMed Google Scholar
Imamachi N, Park GH, Lee H et al (2009) TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc Natl Acad Sci U S A 106:11330–11335 ArticleCASPubMedPubMed Central Google Scholar
Roberson DP, Gudes S, Sprague JM et al (2013) Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nat Neurosci 16:910–918 ArticleCASPubMedPubMed Central Google Scholar
Kim BM, Lee SH, Shim WS, Oh U (2004) Histamine-induced Ca(2+) influx via the PLA(2)/lipoxygenase/TRPV1 pathway in rat sensory neurons. Neurosci Lett 361:159–162 ArticleCASPubMed Google Scholar
Shim W-S, Tak M-H, Lee M-H et al (2007) TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci 27:2331–2337 ArticleCASPubMed Google Scholar
Han S-K, Mancino V, Simon MI (2006) Phospholipase Cbeta 3 mediates the scratching response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron 52:691–703 ArticleCASPubMed Google Scholar
Nicolson TA, Bevan S, Richards CD (2002) Characterisation of the calcium responses to histamine in capsaicin-sensitive and capsaicin-insensitive sensory neurones. Neuroscience 110:329–338 ArticleCASPubMed Google Scholar
Bell JK, McQueen DS, Rees JL (2004) Involvement of histamine H4 and H1 receptors in scratching induced by histamine receptor agonists in Balb C mice. Br J Pharmacol 142:374–380 ArticleCASPubMedPubMed Central Google Scholar
Dunford PJ, Williams KN, Desai PJ et al (2007) Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol 119:176–183 ArticleCASPubMed Google Scholar
Andoh T, Nagasawa T, Satoh M, Kuraishi Y (1998) Substance P induction of itch-associated response mediated by cutaneous NK1 tachykinin receptors in mice. J Pharmacol Exp Ther 286:1140–1145 CASPubMed Google Scholar
Hägermark O, Hökfelt T, Pernow B (1978) Flare and itch induced by substance P in human skin. J Invest Dermatol 71:233–235 ArticlePubMed Google Scholar
CORMIA FE, DOUGHERTY JW (1960) Proteolytic activity in development of pain and itching. Cutaneous reactions to bradykinin and kallikrein. J Invest Dermatol 35:21–26 ArticleCASPubMed Google Scholar
Hägermark O (1974) Studies on experimental itch induced by kallikrein and bradykinin. Acta Derm Venereol 54:397–400 PubMed Google Scholar
Hosogi M, Schmelz M, Miyachi Y, Ikoma A (2006) Bradykinin is a potent pruritogen in atopic dermatitis: a switch from pain to itch. Pain 126:16–23 ArticleCASPubMed Google Scholar
Bandell M, Story GM, Hwang SW et al (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857 ArticleCASPubMed Google Scholar
Wang S, Dai Y, Fukuoka T et al (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131:1241–1251 ArticlePubMed Google Scholar
Bautista DM, Jordt S-E, Nikai T et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282 ArticleCASPubMed Google Scholar
Andoh T, Katsube N, Maruyama M, Kuraishi Y (2001) Involvement of leukotriene B(4) in substance P-induced itch-associated response in mice. J Invest Dermatol 117:1621–1626 ArticleCASPubMed Google Scholar
Eglezos A, Lecci A, Santicioli P et al (1992) Activation of capsaicin-sensitive primary afferents in the rat urinary bladder by compound 48/80: a direct action on sensory nerves? Arch Int Pharmacodyn Thér 315:96–109 CASPubMed Google Scholar
Dong X, Han S, Zylka MJ et al (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632 ArticleCASPubMed Google Scholar
Liu Q, Dong X (2015) The role of the Mrgpr receptor family in itch. Handb Exp Pharmacol 226:71–88 ArticlePubMed Google Scholar
Sikand P, Dong X, LaMotte RH (2011) BAM8-22 peptide produces itch and nociceptive sensations in humans independent of histamine release. J Neurosci 31:7563–7567 ArticleCASPubMedPubMed Central Google Scholar
Weisshaar E, Ziethen B, Gollnick H (1997) Can a serotonin type 3 (5-HT3) receptor antagonist reduce experimentally-induced itch? Inflamm Res 46:412–416 ArticleCASPubMed Google Scholar
Bockaert J, Claeysen S, Bécamel C et al (2006) Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326:553–572 ArticleCASPubMed Google Scholar
Yamaguchi T, Nagasawa T, Satoh M, Kuraishi Y (1999) Itch-associated response induced by intradermal serotonin through 5-HT2 receptors in mice. Neurosci Res 35:77–83 ArticleCASPubMed Google Scholar
Morita T, McClain SP, Batia LM et al (2015) HTR7 mediates serotonergic acute and chronic itch. Neuron 87:124–138 ArticleCASPubMed Google Scholar
Fernandes ES, Vong CT, Quek S et al (2013) Superoxide generation and leukocyte accumulation: key elements in the mediation of leukotriene B4-induced itch by transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1. FASEB J 27:1664–1673 ArticleCASPubMed Google Scholar
Ruzicka T, Simmet T, Peskar BA, Ring J (1986) Skin levels of arachidonic acid-derived inflammatory mediators and histamine in atopic dermatitis and psoriasis. J Invest Dermatol 86:105–108 ArticleCASPubMed Google Scholar
Willemsen MA, Lutt MA, Steijlen PM et al (2001) Clinical and biochemical effects of zileuton in patients with the Sjögren-Larsson syndrome. Eur J Pediatr 160:711–717 ArticleCASPubMed Google Scholar
Brain S, Camp R, Dowd P et al (1984) The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J Invest Dermatol 83:70–73 ArticleCASPubMed Google Scholar
Andoh T, Saito A, Kuraishi Y (2009) Leukotriene B(4) mediates sphingosylphosphorylcholine-induced itch-associated responses in mouse skin. J Invest Dermatol 129:2854–2860 ArticleCASPubMed Google Scholar
Bunchorntavakul C, Reddy KR (2012) Pruritus in chronic cholestatic liver disease. Clin Liver Dis 16:331–346 ArticlePubMed Google Scholar
Ghent CN, Bloomer JR, Klatskin G (1977) Elevations in skin tissue levels of bile acids in human cholestasis: relation to serum levels and topruritus. Gastroenterology 73:1125–1130 CASPubMed Google Scholar
Varadi DP (1974) Pruritus induced by crude bile and purified bile acids. Experimental production of pruritus in human skin. Arch Dermatol 109:678–681 ArticleCASPubMed Google Scholar
Mela M, Mancuso A, Burroughs AK (2003) Review article: pruritus in cholestatic and other liver diseases. Aliment Pharmacol Ther 17:857–870 ArticleCASPubMed Google Scholar
Lieu T, Jayaweera G, Zhao P et al (2014) The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology 147:1417–1428 ArticleCASPubMedPubMed Central Google Scholar
Hashimoto T, Ohata H, Momose K (2004) Itch-scratch responses induced by lysophosphatidic acid in mice. Pharmacology 72:51–56 ArticleCASPubMed Google Scholar
Kremer AE, Martens JJ, Kulik W et al (2010) Lysophosphatidic acid is a potential mediator of cholestatic pruritus. Gastroenterology 139:1008–1018, 1018.e1 ArticleCASPubMed Google Scholar
Shimizu Y, Morikawa Y, Okudaira S et al (2014) Potentials of the circulating pruritogenic mediator lysophosphatidic acid in development of allergic skin inflammation in mice: role of blood cell-associated lysophospholipase D activity of autotaxin. Am J Pathol 184:1593–1603 ArticleCASPubMed Google Scholar
Nieto-Posadas A, Picazo-Juárez G, Llorente I et al (2012) Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nat Chem Biol 8:78–85 ArticleCAS Google Scholar
Katugampola R, Church MK, Clough GF (2000) The neurogenic vasodilator response to endothelin-1: a study in human skin in vivo. Exp Physiol 85:839–846 ArticleCASPubMed Google Scholar
Kido-Nakahara M, Buddenkotte J, Kempkes C et al (2014) Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1-induced pruritus. J Clin Invest 124:2683–2695 ArticleCASPubMedPubMed Central Google Scholar
Trentin PG, Fernandes MB, D’Orléans-Juste P, Rae GA (2006) Endothelin-1 causes pruritus in mice. Exp Biol Med (Maywood) 231:1146–1151 CAS Google Scholar
Liang J, Kawamata T, Ji W (2010) Molecular signaling of pruritus induced by endothelin-1 in mice. Exp Biol Med (Maywood) 235:1300–1305 ArticleCAS Google Scholar
Vellani V, Prandini M, Giacomoni C et al (2011) Functional endothelin receptors are selectively expressed in isolectin B4-negative sensory neurons and are upregulated in isolectin B4-positive neurons by neurturin and glia-derived neurotropic factor. Brain Res 1381:31–37 ArticleCASPubMed Google Scholar
Andoh T, Yoshida T, Lee J-B, Kuraishi Y (2012) Cathepsin E induces itch-related response through the production of endothelin-1 in mice. Eur J Pharmacol 686:16–21 ArticleCASPubMed Google Scholar
Macfarlane SR, Seatter MJ, Kanke T et al (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282 CASPubMed Google Scholar
Reddy VB, Iuga AO, Shimada SG et al (2008) Cowhage-evoked itch is mediated by a novel cysteine protease: a ligand of protease-activated receptors. J Neurosci 28:4331–4335 ArticleCASPubMedPubMed Central Google Scholar
Steinhoff M, Vergnolle N, Young SH et al (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6:151–158 ArticleCASPubMed Google Scholar
Reddy VB, Shimada SG, Sikand P et al (2010) Cathepsin S elicits itch and signals via protease-activated receptors. J Invest Dermatol 130:1468–1470 ArticleCASPubMedPubMed Central Google Scholar
Steinhoff M, Corvera CU, Thoma MS et al (1999) Proteinase-activated receptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol 8:282–294 ArticleCASPubMed Google Scholar
Steinhoff M, Neisius U, Ikoma A et al (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23:6176–6180 CASPubMed Google Scholar
Tsujii K, Andoh T, Ui H et al (2009) Involvement of tryptase and proteinase-activated receptor-2 in spontaneous itch-associated response in mice with atopy-like dermatitis. J Pharmacol Sci 109:388–395 ArticleCASPubMed Google Scholar
Kim N, Bae KB, Kim MO et al (2012) Overexpression of cathepsin S induces chronic atopic dermatitis in mice. J Invest Dermatol 132:1169–1176 ArticleCASPubMed Google Scholar
Shimada SG, Shimada KA, Collins JG (2006) Scratching behavior in mice induced by the proteinase-activated receptor-2 agonist, SLIGRL-NH2. Eur J Pharmacol 530:281–283 ArticleCASPubMed Google Scholar
Liu Q, Weng H-J, Patel KN et al (2011) The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci Signal 4:ra45 CASPubMedPubMed Central Google Scholar
Reddy VB, Sun S, Azimi E et al (2015) Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs. Nat Commun 6:7864 ArticleCASPubMedPubMed Central Google Scholar
Wilson SR, Thé L, Batia LM et al (2013) The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155:285–295 ArticleCASPubMedPubMed Central Google Scholar
Amadesi S, Nie J, Vergnolle N et al (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24:4300–4312 ArticleCASPubMed Google Scholar
Dai Y, Wang S, Tominaga M et al (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:3140–3140 ArticleCASPubMed Central Google Scholar
O’Sullivan LA, Liongue C, Lewis RS et al (2007) Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease. Mol Immunol 44:2497–2506 ArticlePubMedCAS Google Scholar
Yoo J, Omori M, Gyarmati D et al (2005) Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med 202:541–549 ArticleCASPubMedPubMed Central Google Scholar
Singer EM, Shin DB, Nattkemper LA et al (2013) IL-31 is produced by the malignant T-cell population in cutaneous T-cell lymphoma and correlates with CTCL pruritus. J Invest Dermatol 133:2783–2785 ArticleCASPubMed Google Scholar
Boguniewicz M, Leung DYM (2011) Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev 242:233–246 ArticleCASPubMedPubMed Central Google Scholar
Grimstad O, Sawanobori Y, Vestergaard C et al (2009) Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: a model of atopic dermatitis. Exp Dermatol 18:35–43 ArticleCASPubMed Google Scholar
Dillon SR, Sprecher C, Hammond A et al (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5:752–760 ArticleCASPubMed Google Scholar
Cevikbas F, Wang X, Akiyama T et al (2014) A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol 133:448–460 ArticleCASPubMedPubMed Central Google Scholar
Barajon I, Serrao G, Arnaboldi F et al (2009) Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 57:1013–1023 ArticleCASPubMedPubMed Central Google Scholar
Hemmi H, Kaisho T, Takeuchi O et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200 ArticleCASPubMed Google Scholar
Kim S-J, Park GH, Kim D et al (2011) Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc Natl Acad Sci U S A 108:3371–3376 ArticleCASPubMedPubMed Central Google Scholar
Schön MP, Schön M, Klotz K-N (2006) The small antitumoral immune response modifier imiquimod interacts with adenosine receptor signaling in a TLR7- and TLR8-independent fashion. J Invest Dermatol 126:1338–1347 ArticlePubMedCAS Google Scholar
Lee J, Kim T, Hong J et al (2012) Imiquimod enhances excitability of dorsal root ganglion neurons by inhibiting background (K(2P)) and voltage-gated (K(v)1.1 and K(v)1.2) potassium channels. Mol Pain 8:2 ArticleCASPubMedPubMed Central Google Scholar
Park C-K, Xu Z-Z, Berta T et al (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82:47–54 ArticleCASPubMedPubMed Central Google Scholar
Liu T, Berta T, Xu Z-Z et al (2012) TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Invest 122:2195–2207 ArticleCASPubMedPubMed Central Google Scholar
Diogenes A, Ferraz CCR, Akopian AN et al (2011) LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res 90:759–764 ArticleCASPubMed Google Scholar
Ferraz CCR, Henry MA, Hargreaves KM, Diogenes A (2011) Lipopolysaccharide from Porphyromonas gingivalis sensitizes capsaicin-sensitive nociceptors. J Endod 37:45–48 ArticlePubMedPubMed Central Google Scholar
Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126:2565–2575 ArticleCASPubMed Google Scholar
Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494 ArticleCASPubMedPubMed Central Google Scholar
Liu T, Ji R-R (2012) Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice. Neurosci Bull 28:145–154 ArticlePubMedPubMed CentralCAS Google Scholar
Lagerström MC, Rogoz K, Abrahamsen B et al (2010) VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 68:529–542 ArticlePubMedPubMed CentralCAS Google Scholar
Liu Y, Abdel Samad O, Zhang L et al (2010) VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron 68:543–556 ArticleCASPubMedPubMed Central Google Scholar
Fruhstorfer H, Hermanns M, Latzke L (1986) The effects of thermal stimulation on clinical and experimental itch. Pain 24:259–269 ArticleCASPubMed Google Scholar
Bromm B, Scharein E, Darsow U, Ring J (1995) Effects of menthol and cold on histamine-induced itch and skin reactions in man. Neurosci Lett 187:157–160 ArticleCASPubMed Google Scholar
Han JH, Choi H-K, Kim SJ (2012) Topical TRPM8 agonist (icilin) relieved vulva pruritus originating from lichen sclerosus et atrophicus. Acta Derm Venereol 92:561–562 ArticlePubMed Google Scholar
Davidson S, Zhang X, Khasabov SG et al (2009) Relief of itch by scratching: state-dependent inhibition of primate spinothalamic tract neurons. Nat Neurosci 12:544–546 ArticleCASPubMedPubMed Central Google Scholar
Akiyama T, Iodi Carstens M, Carstens E (2011) Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli. PLoS ONE 6, e22665 ArticleCASPubMedPubMed Central Google Scholar
Ross SE, Mardinly AR, McCord AE et al (2010) Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65:886–898 ArticleCASPubMedPubMed Central Google Scholar
Kamei J, Nagase H (2001) Norbinaltorphimine, a selective kappa-opioid receptor antagonist, induces an itch-associated response in mice. Eur J Pharmacol 418:141–145 ArticleCASPubMed Google Scholar
Kardon AP, Polgár E, Hachisuka J et al (2014) Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 82:573–586 ArticleCASPubMedPubMed Central Google Scholar
Ständer S, Moormann C, Schumacher M et al (2004) Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 13:129–139 ArticlePubMed Google Scholar
Seike M, Ikeda M, Kodama H et al (2005) Inhibition of scratching behaviour caused by contact dermatitis in histidine decarboxylase gene knockout mice. Exp Dermatol 14:169–175 ArticleCASPubMed Google Scholar
Yun J-W, Seo JA, Jang W-H et al (2011) Antipruritic effects of TRPV1 antagonist in murine atopic dermatitis and itching models. J Invest Dermatol 131:1576–1579 ArticleCASPubMed Google Scholar
Alenmyr L, Högestätt ED, Zygmunt PM, Greiff L (2009) TRPV1-mediated itch in seasonal allergic rhinitis. Allergy 64:807–810 ArticleCASPubMed Google Scholar
Sulk M, Seeliger S, Aubert J et al (2012) Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. J Invest Dermatol 132:1253–1262 ArticleCASPubMedPubMed Central Google Scholar
Yamamoto-Kasai E, Yasui K, Shichijo M et al (2013) Impact of TRPV3 on the development of allergic dermatitis as a dendritic cell modulator. Exp Dermatol 22:820–824 ArticleCASPubMed Google Scholar
Yang YS, Cho SI, Choi MG et al (2015) Increased expression of three types of transient receptor potential channels (TRPA1, TRPV4 and TRPV3) in burn scars with post-burn pruritus. Acta Derm Venereol 95:20–24 ArticlePubMedCAS Google Scholar
Peier AM, Reeve AJ, Andersson DA et al (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049 ArticleCASPubMed Google Scholar
Denda M, Sokabe T, Fukumi-Tominaga T, Tominaga M (2007) Effects of skin surface temperature on epidermal permeability barrier homeostasis. J Invest Dermatol 127:654–659 ArticleCASPubMed Google Scholar
Huang SM, Lee H, Chung M-K et al (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28:13727–13737 ArticleCASPubMedPubMed Central Google Scholar
Mandadi S, Sokabe T, Shibasaki K et al (2009) TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch 458:1093–1102 ArticleCASPubMedPubMed Central Google Scholar
Miyamoto T, Petrus MJ, Dubin AE, Patapoutian A (2011) TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat Commun 2:369 ArticlePubMedPubMed CentralCAS Google Scholar
Yoshioka T, Imura K, Asakawa M et al (2009) Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol 129:714–722 ArticleCASPubMed Google Scholar
Asakawa M, Yoshioka T, Matsutani T et al (2006) Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol 126:2664–2672 ArticleCASPubMed Google Scholar
Lin Z, Chen Q, Lee M et al (2012) Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 90:558–564 ArticleCASPubMedPubMed Central Google Scholar
Lai-Cheong JE, Sethuraman G, Ramam M et al (2012) Recurrent heterozygous missense mutation, p.Gly573Ser, in the TRPV3 gene in an Indian boy with sporadic Olmsted syndrome. Br J Dermatol 167:440–442 ArticleCASPubMed Google Scholar
Strotmann R, Harteneck C, Nunnenmacher K et al (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702 ArticleCASPubMed Google Scholar
Liedtke W, Choe Y, Martí-Renom MA et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535 ArticleCASPubMedPubMed Central Google Scholar
Chung M-K, Lee H, Caterina MJ (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278:32037–32046 ArticleCASPubMed Google Scholar
Güler AD, Lee H, Iida T et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414 PubMed Google Scholar
Sokabe T, Fukumi-Tominaga T, Yonemura S et al (2010) The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem 285:18749–18758 ArticleCASPubMedPubMed Central Google Scholar
Beck B, Lehen’kyi V, Roudbaraki M et al (2008) TRPC channels determine human keratinocyte differentiation: new insight into basal cell carcinoma. Cell Calcium 43:492–505 ArticleCASPubMed Google Scholar
Müller M, Essin K, Hill K et al (2008) Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation. J Biol Chem 283:33942–33954 ArticlePubMedPubMed CentralCAS Google Scholar
Leuner K, Kraus M, Woelfle U et al (2011) Reduced TRPC channel expression in psoriatic keratinocytes is associated with impaired differentiation and enhanced proliferation. PLoS ONE 6, e14716 ArticleCASPubMedPubMed Central Google Scholar
Barfield RL, Barrett KR, Moon CM, David-Bajar K (2002) Pruritic linear papules on a 75-year-old woman: a case of localized Darier-White disease. Cutis 70:225–228 PubMed Google Scholar
Pani B, Cornatzer E, Cornatzer W et al (2006) Up-regulation of transient receptor potential canonical 1 (TRPC1) following sarco(endo)plasmic reticulum Ca2+ ATPase 2 gene silencing promotes cell survival: a potential role for TRPC1 in Darier’s disease. Mol Biol Cell 17:4446–4458 ArticleCASPubMedPubMed Central Google Scholar
Ohmura T, Hayashi T, Satoh Y et al (2004) Involvement of substance P in scratching behaviour in an atopic dermatitis model. Eur J Pharmacol 491:191–194 ArticleCASPubMed Google Scholar
Liu B, Escalera J, Balakrishna S et al (2013) TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 27:3549–3563 ArticleCASPubMedPubMed Central Google Scholar
Cowden JM, Zhang M, Dunford PJ, Thurmond RL (2010) The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. J Invest Dermatol 130:1023–1033 ArticleCASPubMed Google Scholar
Miyamoto T, Nojima H, Shinkado T et al (2002) Itch-associated response induced by experimental dry skin in mice. Jpn J Pharmacol 88:285–292 ArticleCASPubMed Google Scholar
Akiyama T, Carstens MI, Carstens E (2010) Spontaneous itch in the absence of hyperalgesia in a mouse hindpaw dry skin model. Neurosci Lett 484:62–65 ArticleCASPubMedPubMed Central Google Scholar
Yamamoto-Kasai E, Imura K, Yasui K et al (2012) TRPV3 as a therapeutic target for itch. J Invest Dermatol 132:2109–2112 ArticleCASPubMed Google Scholar
Cheng X, Jin J, Hu L et al (2010) TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141:331–343 ArticleCASPubMedPubMed Central Google Scholar
Jeffry J, Kim S, Chen Z-F (2011) Itch signaling in the nervous system. Physiology (Bethesda) 26:286–292 ArticleCAS Google Scholar
Akiyama T, Carstens MI, Carstens E (2010) Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain 151:378–383 ArticleCASPubMedPubMed Central Google Scholar
Hanifin JM (2009) Evolving concepts of pathogenesis in atopic dermatitis and other eczemas. J Invest Dermatol 129:320–322 ArticleCASPubMed Google Scholar
Denda M, Tsutsumi M, Goto M et al (2010) Topical application of TRPA1 agonists and brief cold exposure accelerate skin permeability barrier recovery. J Invest Dermatol 130:1942–1945 ArticleCASPubMed Google Scholar
Moran MM, McAlexander MA, Bíró T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620 ArticleCASPubMed Google Scholar
Lim K-M, Park Y-H (2012) Development of PAC-14028, a novel transient receptor potential vanilloid type 1 (TRPV1) channel antagonist as a new drug for refractory skin diseases. Arch Pharm Res 35:393–396 ArticleCASPubMed Google Scholar
Holland C, van Drunen C, Denyer J et al (2014) Inhibition of capsaicin-driven nasal hyper-reactivity by SB-705498, a TRPV1 antagonist. Br J Clin Pharmacol 77:777–788 ArticleCASPubMedPubMed Central Google Scholar
Bareille P, Murdoch RD, Denyer J et al (2013) The effects of a TRPV1 antagonist, SB-705498, in the treatment of seasonal allergic rhinitis. Int J Clin Pharmacol Ther 51:576–584 ArticleCASPubMed Google Scholar
Gibson RA, Robertson J, Mistry H et al (2014) A randomised trial evaluating the effects of the TRPV1 antagonist SB705498 on pruritus induced by histamine, and cowhage challenge in healthy volunteers. PLoS ONE 9, e100610 ArticlePubMedPubMed CentralCAS Google Scholar
Knotkova H, Pappagallo M, Szallasi A (2008) Capsaicin (TRPV1 Agonist) therapy for pain relief: farewell or revival? Clin J Pain 24:142–154 ArticlePubMed Google Scholar
Ständer S, Luger T, Metze D (2001) Treatment of prurigo nodularis with topical capsaicin. J Am Acad Dermatol 44:471–478 ArticlePubMed Google Scholar
Ellis CN, Berberian B, Sulica VI et al (1993) A double-blind evaluation of topical capsaicin in pruritic psoriasis. J Am Acad Dermatol 29:438–442 ArticleCASPubMed Google Scholar
Lysy J, Sistiery-Ittah M, Israelit Y et al (2003) Topical capsaicin—a novel and effective treatment for idiopathic intractable pruritus ani: a randomised, placebo controlled, crossover study. Gut 52:1323–1326 ArticleCASPubMedPubMed Central Google Scholar
Makhlough A, Ala S, Haj-Heydari Z et al (2010) Topical capsaicin therapy for uremic pruritus in patients on hemodialysis. Iran J Kidney Dis 4:137–140 PubMed Google Scholar
Gooding SMD, Canter PH, Coelho HF et al (2010) Systematic review of topical capsaicin in the treatment of pruritus. Int J Dermatol 49:858–865 ArticlePubMed Google Scholar
Panahi Y, Davoodi SM, Khalili H et al (2007) Phenol and menthol in the treatment of chronic skin lesions following mustard gas exposure. Singap Med J 48:392–395 CAS Google Scholar
Frölich M, Enk A, Diepgen TL, Weisshaar E (2009) Successful treatment of therapy-resistant pruritus in lichen amyloidosis with menthol. Acta Derm Venereol 89:524–526 ArticlePubMed Google Scholar
Haught JM, Jukic DM, English JC (2008) Hydroxyethyl starch-induced pruritus relieved by a combination of menthol and camphor. J Am Acad Dermatol 59:151–153 ArticlePubMed Google Scholar
Davidson S, Zhang X, Yoon CH et al (2007) The itch-producing agents histamine and cowhage activate separate populations of primate spinothalamic tract neurons. J Neurosci 27:10007–10014 ArticleCASPubMedPubMed Central Google Scholar
Davidson S, Zhang X, Khasabov SG et al (2012) Pruriceptive spinothalamic tract neurons: physiological properties and projection targets in the primate. J Neurophysiol 108:1711–1723 ArticlePubMedPubMed Central Google Scholar
Usoskin D, Furlan A, Islam S et al (2014) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18:145–153 ArticlePubMedCAS Google Scholar
Peters-Golden M, Gleason MM, Togias A (2006) Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy 36:689–703 ArticleCASPubMedPubMed Central Google Scholar
Nettis E, D’Erasmo M, Di Leo E, et al. (2010) The employment of leukotriene antagonists in cutaneous diseases belonging to allergological field. Mediat Inflamm. doi:10.1155/2010/628171
Angelova-Fischer I, Tsankov N (2005) Successful treatment of severe atopic dermatitis with cysteinyl leukotriene receptor antagonist montelukast. Acta Dermatovenerol Alpina, Pannonica, Adriat 14:115–119 Google Scholar
Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov 7:41–53 ArticleCASPubMed Google Scholar
Kim HJ, Kim DK, Kim H et al (2008) Involvement of the BLT2 receptor in the itch-associated scratching induced by 12-(S)-lipoxygenase products in ICR mice. Br J Pharmacol 154:1073–1078 ArticleCASPubMedPubMed Central Google Scholar
Kim D-K, Kim H-J, Kim H et al (2008) Involvement of serotonin receptors 5-HT1 and 5-HT2 in 12(S)-HPETE-induced scratching in mice. Eur J Pharmacol 579:390–394 ArticleCASPubMed Google Scholar
Gomes LO, Hara DB, Rae GA (2012) Endothelin-1 induces itch and pain in the mouse cheek model. Life Sci 91:628–633 ArticleCASPubMed Google Scholar
Andoh T, Nishikawa Y, Yamaguchi-Miyamoto T et al (2007) Thromboxane A2 induces itch-associated responses through TP receptors in the skin in mice. J Invest Dermatol 127:2042–2047 ArticleCASPubMed Google Scholar
Kasraie S, Niebuhr M, Baumert K, Werfel T (2011) Functional effects of interleukin 31 in human primary keratinocytes. Allergy 66:845–852 ArticleCASPubMed Google Scholar