Transient receptor potential channels as therapeutic targets (original) (raw)
Patapoutian, A., Tate, S. & Woolf, C. J. Transient receptor potential channels: targeting pain at the source. Nature Rev. Drug Discov.8, 55–68 (2009). ArticleCAS Google Scholar
Szallasi, A., Cortright, D. N., Blum, C. A. & Eid, S. R. The vanilloid receptor TRPV1, 10 years from channel cloning to antagonist proof-of-concept. Nature Rev. Drug Discov.6, 357–372 (2007). ArticleCAS Google Scholar
Wu, L. J., Sweet, T. B. & Clapham, D. E. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev.62, 381–404 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nilius, B. & Owsianik, G. Transient receptor potential channelopathies. Pflugers Arch.460, 437–450 (2010). ArticleCASPubMed Google Scholar
Szallasi, A. & Blumberg, P. M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev.51, 159–212 (1999). CASPubMed Google Scholar
Fanger, C. M., del Camino, D. & Moran, M. M. TRPA1 as an analgesic target. Open Drug Discov. J.2, 63–69 (2010). ArticleCAS Google Scholar
McKemy, D. D. Therapeutic potential of TRPM8 modulators. Open Drug Discov. J.2, 80–87 (2010). ArticleCAS Google Scholar
Everaerts, W., Nilius, B. & Owsianik, G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog. Biophys. Mol. Biol.103, 2–17 (2010). ArticleCASPubMed Google Scholar
Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature389, 816–824 (1997). ArticleCASPubMed Google Scholar
Gavva, N. R. et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain136, 202–210 (2008). ArticleCASPubMed Google Scholar
Iida, T., Shimizu, I., Nealen, M. L., Campbell, A. & Caterina, M. Attenuated fever response in mice lacking TRPV1. Neurosci. Lett.378, 28–33 (2005). ArticleCASPubMed Google Scholar
Toth, D. M. et al. Nociception, neurogenic inflammation and thermoregulation in TRPV1 knockdown transgenic mice. Cell. Mol. Life Sci. 11 Nov 2010 (doi:10.1007/s00018-010-0569-2).
Garami, A. et al. Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. J. Neurosci.31, 1721–1733 (2011). ArticleCASPubMedPubMed Central Google Scholar
Romanovsky, A. A. et al. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol. Rev.61, 228–261 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gavva, N. R. et al. Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J. Pharmacol. Exp. Ther.323, 128–137 (2007). ArticleCASPubMed Google Scholar
Rowbotham, M. C. et al. Oral and cutaneous thermosensory profile of selective TRPV1 inhibition by ABT-102 in a randomized healthy volunteer trial. Pain152, 1192–1200 (2011). ArticleCASPubMed Google Scholar
Krarup, A. L. et al. Randomised clinical trial: the efficacy of a transient receptor potential vanilloid 1 antagonist AZD1386 in human oesophageal pain. Aliment. Pharmacol. Ther.33, 1113–1122 (2011). This was the first report of a TRPV1 antagonist that had clinical efficacy in a painful disease state without causing significant adverse effects. ArticleCASPubMed Google Scholar
Lehto, S. G. et al. Antihyperalgesic effects of (R,E)-_N_-(2-hydroxy-2, 3-dihydro-1_H_-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(tri fluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. J. Pharmacol. Exp. Ther.326, 218–229 (2008). ArticleCASPubMed Google Scholar
Chizh, B. A. et al. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain132, 132–141 (2007). ArticleCASPubMed Google Scholar
Knotkova, H., Pappagallo, M. & Szallasi, A. Capsaicin (TRPV1 agonist) therapy for pain relief: farewell or revival? Clin. J. Pain24, 142–154 (2008). ArticlePubMed Google Scholar
Noto, C., Pappagallo, M. & Szallasi, A. NGX-4010, a high-concentration capsaicin dermal patch for lasting relief of peripheral neuropathic pain. Curr. Opin. Investig. Drugs10, 702–710 (2009). CASPubMed Google Scholar
Li, H., Wang, S., Chuang, A. Y., Cohen, B. E. & Chuang, H. H. Activity-dependent targeting of TRPV1 with a pore-permeating capsaicin analog. Proc. Natl Acad. Sci. USA108, 8497–8502 (2011). ArticlePubMedPubMed Central Google Scholar
Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell112, 819–829 (2003). ArticleCASPubMed Google Scholar
Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell124, 1269–1282 (2006). ArticleCASPubMed Google Scholar
Satoh, J. & Yamakage, M. Desflurane induces airway contraction mainly by activating transient receptor potential A1 of sensory C-fibers. J. Anesth.23, 620–623 (2009). ArticlePubMed Google Scholar
Bessac, B. F. et al. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB J.23, 1102–1114 (2009). This was the first demonstration that activation of TRPA1 is both necessary and sufficient to cause nocifensive reflexes in response to inhalation of a broadly reactive respiratory irritant. ArticleCASPubMedPubMed Central Google Scholar
Taylor-Clark, T. E., Kiros, F., Carr, M. J. & McAlexander, M. A. Transient receptor potential ankyrin 1 mediates toluene diisocyanate-evoked respiratory irritation. Am. J. Respir. Cell Mol. Biol.40, 756–762 (2009). ArticleCASPubMed Google Scholar
Taylor-Clark, T. E. & Undem, B. J. Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels. J. Physiol.588, 423–433 (2010). ArticleCASPubMed Google Scholar
Trevisani, M. et al. 4-hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc. Natl Acad. Sci. USA104, 13519–13524 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron50, 277–289 (2006). ArticleCASPubMed Google Scholar
Eid, S. R. et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain4, 48 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wei, H., Hamalainen, M. M., Saarnilehto, M., Koivisto, A. & Pertovaara, A. Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology111, 147–154 (2009). ArticleCASPubMed Google Scholar
Katsura, H. et al. Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp. Neurol.200, 112–123 (2006). ArticleCASPubMed Google Scholar
da Costa, D. S. et al. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain148, 431–437 (2010). ArticleCASPubMed Google Scholar
Chen, J. et al. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain152, 1165–1172 (2011). ArticleCASPubMed Google Scholar
McGaraughty, S. et al. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol. Pain6, 14 (2010). This was the first demonstration that a TRPA1 antagonist is capable of relieving pathological pain in animal models without altering cold sensation in naive animals. ArticleCASPubMedPubMed Central Google Scholar
Kerstein, P. C., del Camino, D., Moran, M. M. & Stucky, C. L. Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors. Mol. Pain5, 19 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron66, 671–680 (2010). This paper was the first to link the activity of a TRP channel to a pain syndrome in humans. It also suggested that potentiation of TRPA1 by cold temperatures is physiologically relevant, as cold is one of the triggers for pain episodes in patients suffering from pain syndromes. ArticleCASPubMedPubMed Central Google Scholar
Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neurosci.9, 628–635 (2006). ArticleCASPubMed Google Scholar
Gopinath, P. et al. Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain. BMC Womens Health5, 2 (2005). ArticleCASPubMedPubMed Central Google Scholar
Facer, P. et al. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol.7, 11 (2007). This was the first report of disease-related changes in the expression of TRPV1, TRPV3 and TRPV4 in painful disease states in humans. ArticleCASPubMedPubMed Central Google Scholar
Xiao, R. et al. Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J. Biol. Chem.283, 6162–6174 (2008). ArticleCASPubMed Google Scholar
Khairatkar Joshi, N., Maharaj, N. & Thomas, A. The TRPV3 receptor as a pain target: a therapeutic promise or just some more new biology? Open Drug Discov. J.2, 88–95 (2010). Google Scholar
Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science307, 1468–1472 (2005). ArticleCASPubMed Google Scholar
Okazawa, M. et al. Noxious heat receptors present in cold-sensory cells in rats. Neurosci. Lett.359, 33–36 (2004). ArticleCASPubMed Google Scholar
Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature448, 204–208 (2007). ArticleCASPubMed Google Scholar
Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron54, 379–386 (2007). ArticleCASPubMed Google Scholar
Proudfoot, C. J. et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol.16, 1591–1605 (2006). ArticleCASPubMed Google Scholar
Parks, D. J. et al. Design and optimization of benzimidazole-containing transient receptor potential melastatin 8 (TRPM8) antagonists. J. Med. Chem.54, 233–247 (2011). ArticleCASPubMed Google Scholar
Andersson, K. E., Gratzke, C. & Hedlund, P. The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int.106, 1114–1127 (2010). ArticleCASPubMed Google Scholar
Avelino, A. & Cruz, F. TRPV1 (vanilloid receptor) in the urinary tract: expression, function and clinical applications. Naunyn Schmiedebergs Arch. Pharmacol.373, 287–299 (2006). ArticleCASPubMed Google Scholar
Everaerts, W. et al. Functional characterization of transient receptor potential channels in mouse urothelial cells. Am. J. Physiol. Renal Physiol.298, F692–F701 (2010). ArticleCASPubMed Google Scholar
Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neurosci.5, 856–860 (2002). ArticleCASPubMed Google Scholar
MacDonald, R., Monga, M., Fink, H. A. & Wilt, T. J. Neurotoxin treatments for urinary incontinence in subjects with spinal cord injury or multiple sclerosis: a systematic review of effectiveness and adverse effects. J. Spinal Cord Med.31, 157–165 (2008). ArticlePubMedPubMed Central Google Scholar
Cruz, C. D. et al. Intrathecal delivery of resiniferatoxin (RTX) reduces detrusor overactivity and spinal expression of TRPV1 in spinal cord injured animals. Exp. Neurol.214, 301–308 (2008). ArticleCASPubMed Google Scholar
Cruz, F. & Dinis, P. Resiniferatoxin and botulinum toxin type A for treatment of lower urinary tract symptoms. Neurourol. Urodyn.26, 920–927 (2007). ArticleCASPubMed Google Scholar
Sculptoreanu, A., de Groat, W. C., Buffington, C. A. & Birder, L. A. Protein kinase C contributes to abnormal capsaicin responses in DRG neurons from cats with feline interstitial cystitis. Neurosci. Lett.381, 42–46 (2005). ArticleCASPubMedPubMed Central Google Scholar
Charrua, A. et al. GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J. Urol.181, 379–386 (2009). ArticleCASPubMed Google Scholar
Gevaert, T. et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J. Clin. Invest.117, 3453–3462 (2007). ArticleCASPubMedPubMed Central Google Scholar
Everaerts, W. et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl Acad. Sci. USA107, 19084–19089 (2010). ArticlePubMedPubMed Central Google Scholar
Mochizuki, T. et al. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J. Biol. Chem.284, 21257–21264 (2009). ArticleCASPubMedPubMed Central Google Scholar
Thorneloe, K. S. et al. N_-((1_S)-1-{[4-((2_S_)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl} -3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J. Pharmacol. Exp. Ther.326, 432–442 (2008). ArticleCASPubMed Google Scholar
Mukerji, G. et al. Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol.6, 6 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lashinger, E. S. et al. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am. J. Physiol. Renal Physiol.295, F803–F810 (2008). ArticleCASPubMed Google Scholar
Paus, R., Schmelz, M., Biro, T. & Steinhoff, M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J. Clin. Invest.116, 1174–1186 (2006). ArticleCASPubMedPubMed Central Google Scholar
Biro, T. et al. TRP channels as novel players in the pathogenesis and therapy of itch. Biochim. Biophys. Acta1772, 1004–1021 (2007). ArticleCASPubMed Google Scholar
Bodo, E. et al. Vanilloid receptor-1 (VR1) is widely expressed on various epithelial and mesenchymal cell types of human skin. J. Invest. Dermatol.123, 410–413 (2004). ArticleCASPubMed Google Scholar
Stander, S. et al. Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp. Dermatol.13, 129–139 (2004). ArticlePubMed Google Scholar
Shim, W. S. et al. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci.27, 2331–2337 (2007). ArticleCASPubMedPubMed Central Google Scholar
Weisshaar, E., Heyer, G., Forster, C. & Handwerker, H. O. Effect of topical capsaicin on the cutaneous reactions and itching to histamine in atopic eczema compared to healthy skin. Arch. Dermatol. Res.290, 306–311 (1998). ArticleCASPubMed Google Scholar
Alenmyr, L., Hogestatt, E. D., Zygmunt, P. M. & Greiff, L. TRPV1-mediated itch in seasonal allergic rhinitis. Allergy64, 807–810 (2009). ArticleCASPubMed Google Scholar
Wilson, S. R. et al. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nature Neurosci.14, 595–602 (2011). This study showed that TRPA1 not only mediates pain and airway irritation but is also required for histamine-independent itch. ArticleCASPubMed Google Scholar
Carrillo, P. et al. Cutaneous wounds produced by capsaicin treatment of newborn rats are due to trophic disturbances. Neurotoxicol. Teratol.20, 75–81 (1998). ArticleCASPubMed Google Scholar
Liu, Y. et al. VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron68, 543–556 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bodo, E. et al. A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am. J. Pathol.166, 985–998 (2005). This study was the first to show that TRPV1 expressed on non-neuronal skin cells is involved in the regulation of cell growth. ArticleCASPubMedPubMed Central Google Scholar
Toth, B. I. et al. Endocannabinoids modulate human epidermal keratinocyte proliferation and survival via the sequential engagement of cannabinoid receptor-1 and transient receptor potential Vanilloid-1. J. Invest. Dermatol.131, 1095–1104 (2011). ArticleCASPubMed Google Scholar
Denda, M., Sokabe, T., Fukumi-Tominaga, T. & Tominaga, M. Effects of skin surface temperature on epidermal permeability barrier homeostasis. J. Invest. Dermatol.127, 654–659 (2007). ArticleCASPubMed Google Scholar
Lee, Y. M., Kim, Y. K. & Chung, J. H. Increased expression of TRPV1 channel in intrinsically aged and photoaged human skin in vivo. Exp. Dermatol.18, 431–436 (2009). ArticleCASPubMed Google Scholar
Lee, Y. M. et al. A novel role for the TRPV1 channel in UV-induced matrix metalloproteinase (MMP)-1 expression in HaCaT cells. J. Cell Physiol.219, 766–775 (2009). ArticleCASPubMed Google Scholar
Peier, A. M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science296, 2046–2049 (2002). ArticleCASPubMed Google Scholar
Asakawa, M. et al. Association of a mutation in TRPV3 with defective hair growth in rodents. J. Invest. Dermatol.126, 2664–2672 (2006). ArticleCASPubMed Google Scholar
Yoshioka, T. et al. Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J. Invest. Dermatol.129, 714–722 (2009). These experiments demonstrated that a gain-of-function mutation in theTrpv3gene results in severe dermatitis in mice; the TRPV3 protein is abundant in keratinocytes. ArticleCASPubMed Google Scholar
Borbiro, I., Geczy, T., Paus, R., Kovacs, L. & Biro, T. Activation of transient receptor potential vanilloid-3 (TRPV3) inhibits human hair growth. J. Invest. Dermatol.128, S151 (2008). ArticleCAS Google Scholar
Mazzone, S. B. & Undem, B. J. Cough sensors. V. Pharmacological modulation of cough sensors. Handb. Exp. Pharmacol.187, 99–127 (2009). ArticleCAS Google Scholar
Carr, M. J. & Lee, L. Y. Plasticity of peripheral mechanisms of cough. Respir. Physiol. Neurobiol.152, 298–311 (2006). ArticlePubMed Google Scholar
Fujimura, M. et al. Prostanoids and cough response to capsaicin in asthma and chronic bronchitis. Eur. Respir. J.8, 1499–1505 (1995). CASPubMed Google Scholar
Blom, H. M. et al. Intranasal capsaicin is efficacious in non-allergic, non-infectious perennial rhinitis. A placebo-controlled study. Clin. Exp. Allergy27, 796–801 (1997). ArticleCASPubMed Google Scholar
Matta, J. A. et al. General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc. Natl Acad. Sci. USA105, 8784–8789 (2008). ArticlePubMedPubMed Central Google Scholar
Andrè, E. et al. Cigarette smoke-induced neurogenic inflammation is mediated by α,β-unsaturated aldehydes and the TRPA1 receptor in rodents. J. Clin. Invest.118, 2574–2582 (2008). PubMedPubMed Central Google Scholar
Birrell, M. A. et al. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am. J. Respir. Crit. Care Med.180, 1042–1047 (2009). ArticleCASPubMedPubMed Central Google Scholar
Talavera, K. et al. Nicotine activates the chemosensory cation channel TRPA1. Nature Neurosci.12, 1293–1299 (2009). ArticleCASPubMed Google Scholar
Caceres, A. I. et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc. Natl Acad. Sci. USA106, 9099–9104 (2009). ArticlePubMedPubMed Central Google Scholar
Nassini, R. et al. Acetaminophen, via its reactive metabolite _N_-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J.24, 4904–4916 (2010). ArticleCASPubMed Google Scholar
Weissmann, N. et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc. Natl Acad. Sci. USA103, 19093–19098 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yu, Y. et al. A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation119, 2313–2322 (2009). ArticleCASPubMedPubMed Central Google Scholar
White, T. A. et al. Role of transient receptor potential C3 in TNF-α-enhanced calcium influx in human airway myocytes. Am. J. Respir. Cell. Mol. Biol.35, 243–251 (2006). ArticleCASPubMedPubMed Central Google Scholar
Xiao, J. H., Zheng, Y. M., Liao, B. & Wang, Y. X. Functional role of canonical transient receptor potential 1 and canonical transient receptor potential 3 in normal and asthmatic airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol.43, 17–25 (2010). ArticleCASPubMed Google Scholar
Sel, S. et al. Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin. Exp. Allergy38, 1548–1558 (2008). ArticleCASPubMed Google Scholar
Jia, Y. et al. Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol.287, L272–L278 (2004). ArticleCASPubMed Google Scholar
Zhu, G. et al. Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum. Mol. Genet.18, 2053–2062 (2009). This was the first study to suggest that TRPV4 can regulate lung function in humans. ArticleCASPubMed Google Scholar
Li, J. et al. TRPV4-mediated calcium-influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environ. Health Perspect.119, 784–793 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jian, M. Y., King, J. A., Al-Mehdi, A. B., Liedtke, W. & Townsley, M. I. High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am. J. Respir. Cell Mol. Biol.38, 386–392 (2008). ArticleCASPubMed Google Scholar
Hamanaka, K. et al. TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am. J. Physiol. Lung Cell. Mol. Physiol.293, L923–L932 (2007). ArticleCASPubMed Google Scholar
Willette, R. N. et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: part 2. J. Pharmacol. Exp. Ther.326, 443–452 (2008). ArticleCASPubMed Google Scholar
Hamanaka, K. et al. TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol.299, L353–L362 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mizoguchi, F. et al. Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J. Cell Physiol.216, 47–53 (2008). ArticleCASPubMed Google Scholar
Masuyama, R. et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell. Metab.8, 257–265 (2008). ArticleCASPubMed Google Scholar
Dai, J. et al. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. J. Med. Genet.47, 704–709 (2010). ArticleCASPubMed Google Scholar
Rock, M. J. et al. Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nature Genet.40, 999–1003 (2008). ArticleCASPubMed Google Scholar
Krakow, D. et al. Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am. J. Hum. Genet.84, 307–315 (2009). ArticleCASPubMedPubMed Central Google Scholar
Auer-Grumbach, M. et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nature Genet.42, 160–164 (2010). ArticleCASPubMed Google Scholar
Landoure, G. et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nature Genet.42, 170–174 (2010). ArticleCASPubMed Google Scholar
Feng, S. et al. Identification and functional characterization of an N-terminal oligomerization domain for polycystin-2. J. Biol. Chem.283, 28471–28479 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genet.33, 129–137 (2003). ArticleCASPubMed Google Scholar
Sharif-Naeini, R. et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell139, 587–596 (2009). ArticleCASPubMed Google Scholar
Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science308, 1801–1804 (2005). ArticleCASPubMed Google Scholar
Moller, C. C. et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J. Am. Soc. Nephrol.18, 29–36 (2007). ArticleCASPubMed Google Scholar
Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nature Genet.37, 739–744 (2005). ArticleCASPubMed Google Scholar
Chubanov, V. et al. Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J. Biol. Chem.282, 7656–7667 (2007). ArticleCASPubMed Google Scholar
Schlingmann, K. P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nature Genet.31, 166–170 (2002). ArticleCASPubMed Google Scholar
Schlingmann, K. P. et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J. Am. Soc. Nephrol.16, 3061–3069 (2005). ArticlePubMed Google Scholar
Dong, X. P. et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature455, 992–996 (2008). ArticleCASPubMedPubMed Central Google Scholar
Szallasi, A. & Di Marzo, V. New perspectives on enigmatic vanilloid receptors. Trends Neurosci.23, 491–497 (2000). ArticleCASPubMed Google Scholar
Cavanaugh, D. et al. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle. J. Neurosci.31, 5067–5077 (2011). This careful study highlighted the challenges of determining the expression pattern for a target of interest, and the need to combine multiple approaches. ArticleCASPubMedPubMed Central Google Scholar
Marsch, R. et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J. Neurosci.27, 832–839 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mezey, E. et al. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl Acad. Sci. USA97, 3655–3660 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kauer, J. A. & Gibson, H. E. Hot flash: TRPV channels in the brain. Trends Neurosci.32, 215–224 (2009). ArticleCASPubMed Google Scholar
Grueter, B. A., Brasnjo, G. & Malenka, R. C. Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nature Neurosci.13, 1519–1525 (2010). ArticleCASPubMed Google Scholar
Jia, Y., Zhou, J., Tai, Y. & Wang, Y. TRPC channels promote cerebellar granule neuron survival. Nature Neurosci.10, 559–567 (2007). ArticleCASPubMed Google Scholar
Becker, E. B. et al. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc. Natl Acad. Sci. USA106, 6706–6711 (2009). ArticlePubMedPubMed Central Google Scholar
Riccio, A. et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell137, 761–772 (2009). This study was the first to implicate TRPC5 in anxiety. The neuronal recordings obtained in the study suggest that there is a potential link between TRPC5 and the CCK4 pathway. ArticleCASPubMedPubMed Central Google Scholar
Greka, A., Navarro, B., Oancea, E., Duggan, A. & Clapham, D. E. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nature Neurosci.6, 837–845 (2003). ArticleCASPubMed Google Scholar
Miller, B. A. & Zhang, W. TRP channels as mediators of oxidative stress. Adv. Exp. Med. Biol.704, 531–544 (2011). ArticleCASPubMed Google Scholar
Xu, C. et al. TRPM2 variants and bipolar disorder risk: confirmation in a family-based association study. Bipolar Disord.11, 1–10 (2009). ArticlePubMed Google Scholar
Aarts, M. et al. A key role for TRPM7 channels in anoxic neuronal death. Cell115, 863–877 (2003). ArticleCASPubMed Google Scholar
Lehen'kyi, V. & Prevarskaya, N. Oncogenic TRP channels. Adv. Exp. Med. Biol.704, 929–945 (2011). ArticleCASPubMed Google Scholar
Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res.61, 3760–3769 (2001). CASPubMed Google Scholar
Thebault, S. et al. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J. Biol. Chem.280, 39423–39435 (2005). ArticleCASPubMed Google Scholar
Reading, S. A. & Brayden, J. E. Central role of TRPM4 channels in cerebral blood flow regulation. Stroke38, 2322–2328 (2007). ArticleCASPubMed Google Scholar
Kruse, M. et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J. Clin. Invest.119, 2737–2744 (2009). ArticleCASPubMedPubMed Central Google Scholar
Liu, H. et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ. Cardiovasc. Genet.3, 374–385 (2010). ArticleCASPubMed Google Scholar
Mathar, I. et al. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J. Clin. Invest.120, 3267–3279 (2010). ArticleCASPubMedPubMed Central Google Scholar
Colsoul, B. et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−/− mice. Proc. Natl Acad. Sci. USA107, 5208–5213 (2010). This study identified TRPM5 as a potential target for antidiabetic drugs. ArticlePubMedPubMed Central Google Scholar
Suri, A. & Szallasi, A. The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol. Sci.29, 29–36 (2008). ArticleCASPubMed Google Scholar
Biro, T. et al. Hair cycle control by vanilloid receptor-1 (TRPV1): evidence from TRPV1 knockout mice. J. Invest. Dermatol.126, 1909–1912 (2006). ArticleCASPubMed Google Scholar
Toth, B. I. et al. Transient receptor potential vanilloid-1 signaling as a regulator of human sebocyte biology. J. Invest. Dermatol.129, 329–339 (2009). ArticleCASPubMed Google Scholar
Beck, B. et al. TRPC channels determine human keratinocyte differentiation: new insight into basal cell carcinoma. Cell Calcium43, 492–505 (2008). ArticleCASPubMed Google Scholar
Pani, B. et al. Up-regulation of transient receptor potential canonical 1 (TRPC1) following sarco(endo)plasmic reticulum Ca2+ ATPase 2 gene silencing promotes cell survival: a potential role for TRPC1 in Darier's disease. Mol. Biol. Cell17, 4446–4458 (2006). ArticleCASPubMedPubMed Central Google Scholar
Atoyan, R., Shander, D. & Botchkareva, N. V. Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J. Invest. Dermatol.129, 2312–2315 (2009). ArticleCASPubMed Google Scholar
Lehen'kyi, V. et al. TRPV6 is a Ca2+ entry channel essential for Ca2+-induced differentiation of human keratinocytes. J. Biol. Chem.282, 22582–22591 (2007). ArticleCASPubMed Google Scholar
McNeill, M. S. et al. Cell death of melanophores in zebrafish trpm7 mutant embryos depends on melanin synthesis. J. Invest. Dermatol.127, 2020–2030 (2007). ArticleCASPubMed Google Scholar
Kiyonaka, S. et al. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc. Natl Acad. Sci. USA106, 5400–5405 (2009). ArticlePubMedPubMed Central Google Scholar
Venkatachalam, K. et al. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell135, 838–851 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lambert, S. et al. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J. Biol. Chem.286, 12221–12233 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bellone, R. R. et al. Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus). Genetics179, 1861–1870 (2008). ArticleCASPubMedPubMed Central Google Scholar
Audo, I. et al. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am. J. Hum. Genet.85, 720–729 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, Z. et al. Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am. J. Hum. Genet.85, 711–719 (2009). ArticleCASPubMedPubMed Central Google Scholar
van Genderen, M. M. et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am. J. Hum. Genet.85, 730–736 (2009). ArticleCASPubMedPubMed Central Google Scholar
Uchida, K. et al. Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes60, 119–126 (2011). ArticleCASPubMed Google Scholar
Harteneck, C., Frenzel, H. & Kraft, R. _N_-(p-amylcinnamoyl)anthranilic acid (ACA): a phospholipase A(2) inhibitor and TRP channel blocker. Cardiovasc. Drug Rev.25, 61–75 (2007). ArticleCASPubMed Google Scholar
Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science322, 756–760 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hermosura, M. C. et al. A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc. Natl Acad. Sci. USA102, 11510–11515 (2005). ArticleCASPubMedPubMed Central Google Scholar
Higashi, Y., Kiuchi, T. & Furuta, K. Efficacy and safety profile of a topical methyl salicylate and menthol patch in adult patients with mild to moderate muscle strain: a randomized, double-blind, parallel-group, placebo-controlled, multicenter study. Clin. Ther.32, 34–43 (2010). ArticleCASPubMed Google Scholar