Friedl P, Weigelin B (2008) Interstitial leukocyte migration and immune function. Nat Immunol 9:960–969 ArticleCASPubMed Google Scholar
Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6:1182–1190 ArticleCASPubMed Google Scholar
Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964 ArticleCASPubMed Google Scholar
Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213 ArticleCASPubMed Google Scholar
Wilke CM, Wu K, Zhao E et al (2010) Prognostic significance of regulatory T cells in tumor. Int J Cancer 127:748–758 CASPubMed Google Scholar
Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307 ArticleCASPubMed Google Scholar
Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314 ArticleCASPubMed Google Scholar
Ley K, Laudanna C, Cybulsky MI et al (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689 ArticleCASPubMed Google Scholar
Nourshargh S, Hordijk PL, Sixt M (2010) Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 11:366–378 ArticleCASPubMed Google Scholar
Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156 ArticleCASPubMed Google Scholar
Fukuda M, Hiraoka N, Yeh JC (1999) C-type lectins and sialyl Lewis X oligosaccharides. Versatile roles in cell–cell interaction. J Cell Biol 147:467–470 ArticleCASPubMed Google Scholar
Yeh JC, Hiraoka N, Petryniak B et al (2001) Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-_N_-acetylglucosaminyltransferase. Cell 105:957–969 ArticleCASPubMed Google Scholar
McEver RP (2002) Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol 14:581–586 ArticleCASPubMed Google Scholar
Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877 ArticleCASPubMed Google Scholar
Cernuda-Morollon E, Ridley AJ (2006) Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ Res 98:757–767 ArticleCASPubMed Google Scholar
Arnaout MA, Mahalingam B, Xiong JP (2005) Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol 21:381–410 ArticleCASPubMed Google Scholar
Ridley AJ, Schwartz MA, Burridge K et al (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709 ArticleCASPubMed Google Scholar
Barreiro O, de la Fuente H, Mittelbrunn M et al (2007) Functional insights on the polarized redistribution of leukocyte integrins and their ligands during leukocyte migration and immune interactions. Immunol Rev 218:147–164 ArticleCASPubMed Google Scholar
Shulman Z, Shinder V, Klein E et al (2009) Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity 30:384–396 ArticleCASPubMed Google Scholar
Carman CV, Springer TA (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167:377–388 ArticleCASPubMed Google Scholar
Barreiro O, Yanez-Mo M, Serrador JM et al (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157:1233–1245 ArticleCASPubMed Google Scholar
Feng D, Nagy JA, Pyne K et al (1998) Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 187:903–915 ArticleCASPubMed Google Scholar
Muller WA (2003) Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24:327–334 CASPubMed Google Scholar
Vestweber D (2002) Regulation of endothelial cell contacts during leukocyte extravasation. Curr Opin Cell Biol 14:587–593 ArticleCASPubMed Google Scholar
Woodfin A, Voisin MB, Imhof BA et al (2009) Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1. Blood 113:6246–6257 ArticleCASPubMed Google Scholar
Millan J, Hewlett L, Glyn M et al (2006) Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol 8:113–123 ArticleCASPubMed Google Scholar
Engelhardt B, Wolburg H (2004) Mini-review: transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol 34:2955–2963 ArticleCASPubMed Google Scholar
Cinamon G, Shinder V, Shamri R et al (2004) Chemoattractant signals and beta 2 integrin occupancy at apical endothelial contacts combine with shear stress signals to promote transendothelial neutrophil migration. J Immunol 173:7282–7291 CASPubMed Google Scholar
Rowe RG, Weiss SJ (2008) Breaching the basement membrane: who, when and how? Trends Cell Biol 18:560–574 ArticleCASPubMed Google Scholar
Leppert D, Waubant E, Galardy R et al (1995) T cell gelatinases mediate basement membrane transmigration in vitro. J Immunol 154:4379–4389 CASPubMed Google Scholar
Mydel P, Shipley JM, Adair-Kirk TL et al (2008) Neutrophil elastase cleaves laminin-332 (laminin-5) generating peptides that are chemotactic for neutrophils. J Biol Chem 283:9513–9522 ArticleCASPubMed Google Scholar
Friedl P, Entschladen F, Conrad C et al (1998) CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. Eur J Immunol 28:2331–2343 ArticleCASPubMed Google Scholar
Lammermann T, Bader BL, Monkley SJ et al (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55 ArticlePubMedCAS Google Scholar
Boissonnas A, Fetler L, Zeelenberg IS et al (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204:345–356 ArticleCASPubMed Google Scholar
Breart B, Lemaitre F, Celli S et al (2008) Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest 118:1390–1397 ArticleCASPubMed Google Scholar
Mrass P, Takano H, Ng LG et al (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 203:2749–2761 ArticleCASPubMed Google Scholar
Le Floc’h A, Jalil A, Vergnon I et al (2007) Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J Exp Med 204:559–570 ArticlePubMedCAS Google Scholar
Thomsen AR, Nansen A, Madsen AN et al (2003) Regulation of T cell migration during viral infection: role of adhesion molecules and chemokines. Immunol Lett 85:119–127 ArticleCASPubMed Google Scholar
Naito Y, Saito K, Shiiba K et al (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494 CASPubMed Google Scholar
Wada Y, Nakashima O, Kutami R et al (1998) Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 27:407–414 ArticleCASPubMed Google Scholar
Budhu S, Loike JD, Pandolfi A et al (2010) CD8+ T cell concentration determines their efficiency in killing cognate antigen-expressing syngeneic mammalian cells in vitro and in mouse tissues. J Exp Med 207:223–235 ArticleCASPubMed Google Scholar
Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360 ArticleCASPubMed Google Scholar
Johansson M, Denardo DG, Coussens LM (2008) Polarized immune responses differentially regulate cancer development. Immunol Rev 222:145–154 ArticleCASPubMed Google Scholar
Kemp RA, Ronchese F (2001) Tumor-specific Tc1, but not Tc2, cells deliver protective antitumor immunity. J Immunol 167:6497–6502 CASPubMed Google Scholar
Stockinger B, Veldhoen M, Martin B (2007) Th17 T cells: linking innate and adaptive immunity. Semin Immunol 19:353–361 ArticleCASPubMed Google Scholar
Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238 ArticleCASPubMed Google Scholar
Kimura A, Naka T, Nohara K et al (2008) Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci USA 105:9721–9726 ArticleCASPubMed Google Scholar
Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28:454–467 ArticleCASPubMed Google Scholar
Bettelli E, Korn T, Oukka M et al (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057 ArticleCASPubMed Google Scholar
Miyahara Y, Odunsi K, Chen W et al (2008) Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA 105:15505–15510 ArticleCASPubMed Google Scholar
Kryczek I, Banerjee M, Cheng P et al (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149 ArticleCASPubMed Google Scholar
Zhang JP, Yan J, Xu J et al (2009) Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 50:980–989 ArticleCASPubMed Google Scholar
Wang L, Yi T, Kortylewski M et al (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 206:1457–1464 ArticleCASPubMed Google Scholar
Kryczek I, Wei S, Szeliga W et al (2009) Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 114:357–359 ArticleCASPubMed Google Scholar
Muranski P, Boni A, Antony PA et al (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112:362–373 ArticleCASPubMed Google Scholar
Rudensky AY, Gavin M, Zheng Y (2006) FOXP3 and NFAT: partners in tolerance. Cell 126:253–256 ArticleCASPubMed Google Scholar
Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562 ArticleCASPubMed Google Scholar
Sakaguchi S, Miyara M, Costantino CM et al (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500 ArticleCASPubMed Google Scholar
Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9:239–244 ArticleCASPubMed Google Scholar
Hiraoka N, Onozato K, Kosuge T et al (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434 ArticleCASPubMed Google Scholar
Kobayashi N, Hiraoka N, Yamagami W et al (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13:902–911 ArticleCASPubMed Google Scholar
Salama P, Phillips M, Grieu F et al (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192 ArticlePubMed Google Scholar
Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917 ArticlePubMed Google Scholar
Ueno Y, Moriyama M, Uchida T et al (2001) Irregular regeneration of hepatocytes is an important factor in the hepatocarcinogenesis of liver disease. Hepatology 33:357–362 ArticleCASPubMed Google Scholar
Sakamoto M, Hirohashi S, Shimosato Y (1991) Early stages of multistep hepatocarcinogenesis: adenomatous hyperplasia and early hepatocellular carcinoma. Hum Pathol 22:172–178 ArticleCASPubMed Google Scholar
(2009) Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 49:658–664
Lee WY, Kubes P (2008) Leukocyte adhesion in the liver: distinct adhesion paradigm from other organs. J Hepatol 48:504–512 ArticleCASPubMed Google Scholar
Shetty S, Lalor PF, Adams DH (2008) Lymphocyte recruitment to the liver: molecular insights into the pathogenesis of liver injury and hepatitis. Toxicology 254:136–146 ArticleCASPubMed Google Scholar
Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1 ArticlePubMed Google Scholar
Wong J, Johnston B, Lee SS et al (1997) A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J Clin Invest 99:2782–2790 ArticleCASPubMed Google Scholar
Fox-Robichaud A, Kubes P (2000) Molecular mechanisms of tumor necrosis factor alpha-stimulated leukocyte recruitment into the murine hepatic circulation. Hepatology 31:1123–1127 ArticleCASPubMed Google Scholar
Bonder CS, Norman MU, Swain MG et al (2005) Rules of recruitment for Th1 and Th2 lymphocytes in inflamed liver: a role for alpha-4 integrin and vascular adhesion protein-1. Immunity 23:153–163 ArticleCASPubMed Google Scholar
Lalor PF, Sun PJ, Weston CJ et al (2007) Activation of vascular adhesion protein-1 on liver endothelium results in an NF-kappaB-dependent increase in lymphocyte adhesion. Hepatology 45:465–474 ArticleCASPubMed Google Scholar
Oo YH, Shetty S, Adams DH (2010) The role of chemokines in the recruitment of lymphocytes to the liver. Dig Dis 28:31–44 ArticlePubMed Google Scholar
Mantovani A, Savino B, Locati M et al (2010) The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev 21:27–39 ArticleCASPubMed Google Scholar
Ishida T, Iida S, Akatsuka Y et al (2004) The CC chemokine receptor 4 as a novel specific molecular target for immunotherapy in adult T-cell leukemia/lymphoma. Clin Cancer Res 10:7529–7539 ArticleCASPubMed Google Scholar
Ito A, Ishida T, Yano H et al (2009) Defucosylated anti-CCR4 monoclonal antibody exercises potent ADCC-mediated antitumor effect in the novel tumor-bearing humanized NOD/Shi-scid, IL-2Rgamma(null) mouse model. Cancer Immunol Immunother 58:1195–1206 ArticleCASPubMed Google Scholar
Yamamoto K, Utsunomiya A, Tobinai K et al (2010) Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia–lymphoma and peripheral T-cell lymphoma. J Clin Oncol 28:1591–1598 ArticleCASPubMed Google Scholar
Morikawa S, Baluk P, Kaidoh T et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000 PubMed Google Scholar
Dirkx AE, Oude Egbrink MG, Kuijpers MJ et al (2003) Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res 63:2322–2329 CASPubMed Google Scholar
Buckanovich RJ, Facciabene A, Kim S et al (2008) Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 14:28–36 ArticleCASPubMed Google Scholar
Hamzah J, Jugold M, Kiessling F et al (2008) Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453:410–414 ArticleCASPubMed Google Scholar
Shrimali RK, Yu Z, Theoret MR et al (2010) Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70:6171–6180 ArticleCASPubMed Google Scholar
Matsui O, Kadoya M, Kameyama T et al (1991) Benign and malignant nodules in cirrhotic livers: distinction based on blood supply. Radiology 178:493–497 CASPubMed Google Scholar
Hayashi M, Matsui O, Ueda K et al (2002) Progression to hypervascular hepatocellular carcinoma: correlation with intranodular blood supply evaluated with CT during intraarterial injection of contrast material. Radiology 225:143–149 ArticlePubMed Google Scholar
Park YN, Yang CP, Fernandez GJ et al (1998) Neoangiogenesis and sinusoidal “capillarization” in dysplastic nodules of the liver. Am J Surg Pathol 22:656–662 ArticleCASPubMed Google Scholar
Ueda K, Terada T, Nakanuma Y et al (1992) Vascular supply in adenomatous hyperplasia of the liver and hepatocellular carcinoma: a morphometric study. Hum Pathol 23:619–626 ArticleCASPubMed Google Scholar