Gershon, R. K. & Kondo, K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology18, 723?737 (1970). CASPubMedPubMed Central Google Scholar
Fujimoto, S., Greene, M. & Sehon, A. H. Immunosuppressor T cells in tumour bearing host. Immunol. Commun.4, 201?217 (1975). ArticleCASPubMed Google Scholar
Berendt, M. J. & North, R. J. T-cell-mediated suppression of anti-tumour immunity. An explanation for progressive growth of an immunogenic tumour. J. Exp. Med.151, 69?80 (1980). ArticleCASPubMed Google Scholar
Bursuker, I. & North, R. J. Generation and decay of the immune response to a progressive fibrosarcoma. II. Failure to demonstrate postexcision immunity after the onset of T cell-mediated suppression of immunity. J. Exp. Med.159, 1312?1321 (1984). ArticleCASPubMed Google Scholar
North, R. J. & Bursuker, I. Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2− suppressor T cells downregulate the generation of Ly-1−2+ effector T cells. J. Exp. Med.159, 1295?1311 (1984). ArticleCASPubMed Google Scholar
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155, 1151?1164 (1995). This paper proposed CD25 as a surface marker of CD4+ regulatory T cells. CASPubMed Google Scholar
Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science299, 1057?1061 (2003). ArticleCASPubMed Google Scholar
Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol.4, 330?336 (2003). ArticleCAS Google Scholar
Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol.4, 337?342 (2003). References 9?11 provide evidence that FOXP3 is crucial for regulatory T-cell development and function. ArticleCAS Google Scholar
Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature389, 737?742 (1997). The first study showing that functional regulatory T cells can be induced. ArticleCASPubMed Google Scholar
Weiner, H. L. Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells. Immunol. Rev.182, 207?214 (2001). ArticleCASPubMed Google Scholar
Cosmi, L. et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood102, 4107?4114 (2003). ArticleCASPubMed Google Scholar
Chang, C. C. et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nature Immunol.3, 237?243 (2002). ArticleCAS Google Scholar
Rifa'i, M., Kawamoto, Y., Nakashima, I. & Suzuki, H. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J. Exp. Med.200, 1123?1134 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zou, W. et al. Stromal-derived factor-1 in human tumours recruits and alters the function of plasmacytoid precursor dendritic cells. Nature Med.7, 1339?1346 (2001). ArticleCASPubMed Google Scholar
Wei, S. et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res.65, 5020?5026 (2005). ArticleCASPubMed Google Scholar
Gilliet, M. & Liu, Y. J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med.195, 695?704 (2002). References 17?19 report that human plasmacytoid dendritic cells can induce CD8+ regulatory T cells. ArticleCASPubMedPubMed Central Google Scholar
Shevach, E. M. CD4+ CD25+ suppressor T cells: more questions than answers. Nature Rev. Immunol.2, 389?400 (2002). An outstanding Review that summarizes recent findings in the field of regulatory T cells and gives an outlook for future direction. ArticleCAS Google Scholar
Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity21, 137?148 (2004). This paper summarizes the most important experimental information to refine and revisit the concept of tumour immune surveillance. ArticleCASPubMed Google Scholar
Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer5, 263?274 (2005). ArticleCAS Google Scholar
Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol.6, 345?352 (2005). ArticleCAS Google Scholar
Onizuka, S. et al. Tumour rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res.59, 3128?3133 (1999). CASPubMed Google Scholar
Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumour immunity by removing CD25+CD4+ T cells: a common basis between tumour immunity and autoimmunity. J. Immunol.163, 5211?5218 (1999). References 24 and 25 are the first reports that depletion of CD25+ cells, probably CD4+CD25+ T cells, improves or promotes tumour immunity in mice. CASPubMed Google Scholar
van Elsas, A. et al. Elucidating the autoimmune and antitumour effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J. Exp. Med.194, 481?489 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sutmuller, R. P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumour therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med.194, 823?832 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yu, P. et al. Intratumour depletion of CD4+ cells unmasks tumour immunogenicity leading to the rejection of late-stage tumours. J. Exp. Med.201, 779?791 (2005). ArticleCASPubMedPubMed Central Google Scholar
Steitz, J., Bruck, J., Lenz, J., Knop, J. & Tuting, T. Depletion of CD25+CD4+ T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon α-induced, CD8+ T-cell-dependent immune defense of B16 melanoma. Cancer Res.61, 8643?8646 (2001). CASPubMed Google Scholar
Jones, E. et al. Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun.2, 1 (2002). PubMed Google Scholar
Tanaka, H., Tanaka, J., Kjaergaard, J. & Shu, S. Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumour-draining lymph nodes. J. Immunother.25, 207?217 (2002). ArticleCASPubMed Google Scholar
Nagai, H. et al. In vivo elimination of CD25+ regulatory T cells leads to tumour rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp. Dermatol.13, 613?620 (2004). ArticleCASPubMed Google Scholar
Prasad, S. J. et al. Dendritic cells loaded with stressed tumour cells elicit long-lasting protective tumour immunity in mice depleted of CD4+CD25+ regulatory T cells. J. Immunol.174, 90?98 (2005). ArticleCASPubMed Google Scholar
Ko, K. et al. Treatment of advanced tumours with agonistic anti-GITR mAb and its effects on tumour-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J. Exp. Med.202, 885?891 (2005). ArticleCASPubMedPubMed Central Google Scholar
Golgher, D., Jones, E., Powrie, F., Elliott, T. & Gallimore, A. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumour rejection antigens. Eur. J. Immunol.32, 3267?3275 (2002). ArticleCASPubMed Google Scholar
Casares, N. et al. CD4+/CD25+ regulatory cells inhibit activation of tumour-primed CD4+ T cells with IFN-γ-dependent antiangiogenic activity, as well as long-lasting tumour immunity elicited by peptide vaccination. J. Immunol.171, 5931?5939 (2003). ArticleCASPubMed Google Scholar
Barnett, B., Kryczek, I., Cheng, P., Zou, W. & Curiel, T. J. Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am. J. Reprod. Immunol.54, 369?377 (2005). ArticleCASPubMed Google Scholar
Dannull, J. et al. Enhancement of vaccine-mediated antitumour immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest.115, 3623?3633 (2005). ArticleCASPubMedPubMed Central Google Scholar
Attia, P., Maker, A. V., Haworth, L. R., Rogers-Freezer, L. & Rosenberg, S. A. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother.28, 582?592 (2005). ArticleCASPubMedPubMed Central Google Scholar
Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med.10, 942?949 (2004). ArticleCASPubMed Google Scholar
Turk, M. J., Guevara-Patino, J. A., Rizzuto, G. A., Engelhorn, M. E. & Houghton, A. N. Concomitant tumour immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J. Exp. Med.200, 771?782 (2004). ArticleCASPubMedPubMed Central Google Scholar
Antony, P. A. et al. CD8+ T cell immunity against a tumour/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol.174, 2591?601 (2005). References 40, 41 and 42 provide a direct functional link between CD4+CD25+ T cells and tumour immunopathogenesis in tumour patients and in tumour-bearing mice, respectively. ArticleCASPubMed Google Scholar
Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol.3, 135?142 (2002). ArticleCAS Google Scholar
Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295?302 (2000). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.192, 303?310 (2000). ArticleCASPubMedPubMed Central Google Scholar
Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumour immunity by CTLA-4 blockade. Science271, 1734?1736 (1996). ArticleCASPubMed Google Scholar
Kwon, E. D. et al. Manipulation of T cell co-stimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc. Natl Acad. Sci. USA94, 8099?8103 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kwon, E. D. et al. Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proc. Natl Acad. Sci. USA96, 15074?15079 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hurwitz, A. A. et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res.60, 2444?2448 (2000). CASPubMed Google Scholar
Hurwitz, A. A., Yu, T. F., Leach, D. R. & Allison, J. P. CTLA-4 blockade synergizes with tumour-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl Acad. Sci. USA95, 10067?10071 (1998). ArticleCASPubMedPubMed Central Google Scholar
van Elsas, A., Hurwitz, A. A. & Allison, J. P. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumours accompanied by autoimmune depigmentation. J. Exp. Med.190, 355?366 (1999). ArticleCASPubMedPubMed Central Google Scholar
Espenschied, J. et al. CTLA-4 blockade enhances the therapeutic effect of an attenuated poxvirus vaccine targeting p53 in an established murine tumour model. J. Immunol.170, 3401?3407 (2003). ArticleCASPubMed Google Scholar
Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100, 8372?8377 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hodi, F. S. et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA100, 4712?4717 (2003). References 53 and 54 report clinical trials that show that CTLA4 blockade can induce tumour regression as well as severe, but manageable, autoimmune diseases in patients with tumours. ArticleCASPubMedPubMed Central Google Scholar
Maker, A. V., Attia, P. & Rosenberg, S. A. Analysis of the cellular mechanism of antitumour responses and autoimmunity in patients treated with CTLA-4 blockade. J. Immunol.175, 7746?7754 (2005). ArticleCASPubMed Google Scholar
Tang, Q. et al. Distinct roles of CTLA-4 and TGF-β in CD4+CD25+ regulatory T cell function. Eur. J. Immunol.34, 2996?3005 (2004). ArticleCASPubMed Google Scholar
Rollinghoff, M., Starzinski-Powitz, A., Pfizenmaier, K. & Wagner, H. Cyclophosphamide-sensitive T lymphocytes suppress the in vivo generation of antigen-specific cytotoxic T lymphocytes. J. Exp. Med.145, 455?459 (1977). ArticleCASPubMedPubMed Central Google Scholar
Glaser, M. Augmentation of specific immune response against a syngeneic SV40-induced sarcoma in mice by depletion of suppressor T cells with cyclophosphamide. Cell Immunol.48, 339?345 (1979). ArticleCASPubMed Google Scholar
Yoshida, S., Nomoto, K., Himeno, K. & Takeya, K. Immune response to syngeneic or autologous testicular cells in mice. I. Augmented delayed footpad reaction in cyclophosphamide-treated mice. Clin. Exp. Immunol.38, 211?217 (1979). CASPubMedPubMed Central Google Scholar
Berd, D. & Mastrangelo, M. J. Effect of low dose cyclophosphamide on the immune system of cancer patients: depletion of CD4+, 2H4+ suppressor-inducer T-cells. Cancer Res.48, 1671?1675 (1988). CASPubMed Google Scholar
Awwad, M. & North, R. J. Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumour: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res.49, 1649?1654 (1989). CASPubMed Google Scholar
Awwad, M. & North, R. J. Cyclophosphamide (Cy)-facilitated adoptive immunotherapy of a Cy-resistant tumour. Evidence that Cy permits the expression of adoptive T-cell mediated immunity by removing suppressor T cells rather than by reducing tumour burden. Immunology65, 87?92 (1988). CASPubMedPubMed Central Google Scholar
Lutsiak, M. E. et al. Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood105, 2862?2868 (2005). ArticleCASPubMed Google Scholar
Ercolini, A. M. et al. Recruitment of latent pools of high-avidity CD8+T cells to the antitumour immune response. J. Exp. Med.201, 1591?1602 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells suppress tumour immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumours to be curative. Eur. J. Immunol.34, 336?344 (2004). ArticleCASPubMed Google Scholar
Zhang, H. et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+regulatory T cells. Nature Med.11, 1238?1243 (2005). ArticleCASPubMed Google Scholar
Von Herrath, M. G. & Harrison, L. C. Regulatory Lymphocytes: antigen-induced regulatory T cells in autoimmunity. Nature Rev. Immunol.3, 223?232 (2003). ArticleCAS Google Scholar
Khong, H. T. & Restifo, N. P. Natural selection of tumour variants in the generation of 'tumour escape' phenotypes. Nature Immunol.3, 999?1005 (2002). An outstanding review of tumour immune-evasion mechanisms. ArticleCAS Google Scholar
Woo, E. Y. et al. Regulatory CD4+CD25+ T cells in tumours from patients with early- stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res.61, 4766?4772 (2001). The first demonstration that CD4+CD25+ T cells are increased in patients with tumours and can suppress T-cell activationin vitro. CASPubMed Google Scholar
Liyanage, U. K. et al. Prevalence of regulatory T cells is increased in peripheral blood and tumour microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol.169, 2756?2761 (2002). ArticleCASPubMed Google Scholar
Somasundaram, R. et al. Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-β. Cancer Res.62, 5267?5272 (2002). CASPubMed Google Scholar
Wolf, A. M. et al. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin. Cancer Res.9, 606?612 (2003). PubMed Google Scholar
Ichihara, F. et al. Increased populations of regulatory T cells in peripheral blood and tumour-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin. Cancer Res.9, 4404?4408 (2003). PubMed Google Scholar
Sasada, T., Kimura, M., Yoshida, Y., Kanai, M. & Takabayashi, A. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer98, 1089?1099 (2003). ArticlePubMed Google Scholar
Ormandy, L. A. et al. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res.65, 2457?2464 (2005). ArticleCASPubMed Google Scholar
Karube, K. et al. Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br. J. Haematol.126, 81?84 (2004). ArticleCASPubMed Google Scholar
Marshall, N. A. et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood103, 1755?1762 (2004). ArticleCASPubMed Google Scholar
Viguier, M. et al. Foxp3 expressing CD4+CD25high regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J. Immunol.173, 1444?1453 (2004). ArticleCASPubMed Google Scholar
Gray, C. P., Arosio, P. & Hersey, P. Association of increased levels of heavy-chain ferritin with increased CD4+ CD25+ regulatory T-cell levels in patients with melanoma. Clin. Cancer Res.9, 2551?2559 (2003). CASPubMed Google Scholar
Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+ CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med.199, 971?979 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kriegel, M. A. et al. Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J. Exp. Med.199, 1285?1291 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med.200, 277?285 (2004). ArticleCASPubMedPubMed Central Google Scholar
Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity22, 329?341 (2005). ArticleCASPubMed Google Scholar
Zou, L. et al. Bone marrow is a reservoir for CD4+ CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res.64, 8451?8455 (2004). ArticleCASPubMed Google Scholar
Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Rev. Immunol.4, 941?952 (2004). ArticleCAS Google Scholar
Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med.192, 1213?1222 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med.193, 233?238 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chakraborty, N. G., Chattopadhyay, S., Mehrotra, S., Chhabra, A. & Mukherji, B. Regulatory T-cell response and tumour vaccine-induced cytotoxic T lymphocytes in human melanoma. Hum. Immunol.65, 794?802 (2004). References 86?88 and 143 provide evidence that APCs can induce regulatory T cells in humans. ArticleCASPubMed Google Scholar
Ghiringhelli, F. et al. Tumour cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med.202, 919?929 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yamazaki, S. et al. Direct expansion of functional CD4+CD25+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med.198, 235?247 (2003). CASPubMedPubMed Central Google Scholar
Tarbell, K. V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R. M. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med.199, 1467?1477 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chen, W. et al. Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med.198, 1875?1886 (2003). ArticleCASPubMedPubMed Central Google Scholar
Curotto de Lafaille, M. A., Lino, A. C., Kutchukhidze, N. & Lafaille, J. J. CD25− T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J. Immunol.173, 7259?7268 (2004). ArticleCASPubMed Google Scholar
Fantini, M. C. et al. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25−T cells through Foxp3 induction and downregulation of Smad7. J. Immunol.172, 5149?5153 (2004). ArticleCASPubMed Google Scholar
Liang, S. et al. Conversion of CD4+ CD25− cells into CD4+ CD25+ regulatory T cells in vivo requires B7 co-stimulation, but not the thymus. J. Exp. Med.201, 127?137 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wan, Y. Y. & Flavell, R. A. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl Acad. Sci. USA102, 5126?5131 (2005). ArticleCASPubMedPubMed Central Google Scholar
Seo, N., Hayakawa, S., Takigawa, M. & Tokura, Y. Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4+ T-regulatory cells and systemic collapse of antitumour immunity. Immunology103, 449?457 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, H. Y. et al. Tumour-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity20, 107?118 (2004). The first study demonstrating TAA-specific ligand for CD4+CD25+ T cells in human cancer. ArticleCASPubMed Google Scholar
Hawrylowicz, C. M. & O'Garra, A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nature Rev. Immunol.5, 271?283 (2005). ArticleCAS Google Scholar
Hsieh, C. S. et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity21, 267?277 (2004). ArticleCASPubMed Google Scholar
Zhou, G., Lu, Z., McCadden, J. D., Levitsky, H. I. & Marson, A. L. Reciprocal changes in tumour antigenicity and antigen-specific T cell function during tumour progression. J. Exp. Med.200, 1581?1592 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. J. Exp. Med.202, 1075?1085 (2005). The firstin vivostudy demonstrating a role of CD4+CD25+ T cells in blunting the NK-cell arm of the innate immune system in tumour immunity. ArticleCASPubMedPubMed Central Google Scholar
Chen, M. L. et al. Regulatory T cells suppress tumour-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Natl Acad. Sci. USA102, 419?424 (2005). ArticleCASPubMed Google Scholar
Peng, Y., Laouar, Y., Li, M. O., Green, E. A. & Flavell, R. A. TGF-β regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc. Natl Acad. Sci. USA101, 4572?4577 (2004). ArticleCASPubMedPubMed Central Google Scholar
Green, E. A., Gorelik, L., McGregor, C. M., Tran, E. H. & Flavell, R. A. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β-TGF-β receptor interactions in type 1 diabetes. Proc. Natl Acad. Sci. USA100, 10878?10883 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kryczek, I. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. (in the press).
Kryczek, I. et al. Induction of B7-H4 on antigen presenting cells through interleukin 10: novel suppressive mode for regulatory T cells. J. Immunol. (in the press).
von Boehmer, H. Mechanisms of suppression by suppressor T cells. Nature Immunol.6, 338?344 (2005). ArticleCAS Google Scholar
de la Rosa, M., Rutz, S., Dorninger, H. & Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur. J. Immunol.34, 2480?2488 (2004). ArticleCASPubMed Google Scholar
Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity21, 589?601 (2004). ArticleCASPubMed Google Scholar
Gondek, D. C., Lu, L. F., Quezada, S. A., Sakaguchi, S. & Noelle, R. J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol.174, 1783?1786 (2005). ArticleCASPubMed Google Scholar
Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol.4, 762?774 (2004). ArticleCAS Google Scholar
Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol.4, 1206?1212 (2003). ArticleCAS Google Scholar
Sica, G. L. et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity18, 849?861 (2003). ArticleCASPubMed Google Scholar
Zang, X. et al. B7x: a widely expressed B7 family member that inhibits T cell activation. Proc. Natl Acad. Sci. USA100, 10388?10392 (2003). ArticleCASPubMedPubMed Central Google Scholar
Prasad, D. V., Richards, S., Mai, X. M. & Dong, C. B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity18, 863?873 (2003). ArticleCASPubMed Google Scholar
Nishikawa, H. et al. Definition of target antigens for naturally occurring CD4+CD25+ regulatory T cells. J. Exp. Med.201, 681?686 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nishikawa, H., Jager, E., Ritter, G., Old, L. J. & Gnjatic, S. CD4+ CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients. Blood106, 1008?1011 (2005). ArticleCASPubMed Google Scholar
Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nature Immunol.3, 756?763 (2002). ArticleCAS Google Scholar
Zhou, G., Drake, C. G. & Levitsky, H. I. Amplification of tumour-specific regulatory T cells following therapeutic cancer vaccines. Blood107, 628?636 (2006). ArticleCASPubMedPubMed Central Google Scholar
Thornton, A. M. & Shevach, E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol.164, 183?190 (2000). ArticleCASPubMed Google Scholar
Foss, F. M. DAB389 IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clin. Lymphoma1, 110?116 (2000). ArticleCASPubMed Google Scholar
Shibutani, S. et al. Effects of immunosuppressants on induction of regulatory cells after intratracheal delivery of alloantigen. Transplantation79, 904?913 (2005). ArticleCASPubMed Google Scholar
Kawai, M., Kitade, H., Mathieu, C., Waer, M. & Pirenne, J. Inhibitory and stimulatory effects of cyclosporine A on the development of regulatory T cells in vivo. Transplantation79, 1073?1077 (2005). ArticleCASPubMed Google Scholar
Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. & Lafaille, J. J. Interleukin 2 signalling is required for CD4+regulatory T cell function. J. Exp. Med.196, 851?857 (2002). ArticleCASPubMedPubMed Central Google Scholar
Malek, T. R. & Bayer, A. L. Tolerance, not immunity, crucially depends on IL-2. Nature Rev. Immunol.4, 665?674 (2004). ArticleCAS Google Scholar
Bayer, A. L., Yu, A., Adeegbe, D. & Malek, T. R. Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period. J. Exp. Med.201, 769?777 (2005). ArticleCASPubMedPubMed Central Google Scholar
Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+CD25+CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med.201, 723?735 (2005). ArticleCASPubMedPubMed Central Google Scholar
Thornton, A. M., Donovan, E. E., Piccirillo, C. A. & Shevach, E. M. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J. Immunol.172, 6519?6523 (2004). ArticleCASPubMed Google Scholar
Antony, P. A. & Restifo, N. P. CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J. Immunother.28, 120?128 (2005). ArticleCASPubMedPubMed Central Google Scholar
Finn, O. J. Cancer vaccines: between the idea and the reality. Nature Rev. Immunol.3, 630?641 (2003). An outstanding and comprehensive review of the development of vaccination and immunotherapy for cancer. It proposes that cancer vaccines must overcome immune suppression. ArticleCAS Google Scholar
Sereti, I. et al. IL-2-induced CD4+ T-cell expansion in HIV-infected patients is associated with long-term decreases in T-cell proliferation. Blood104, 775?780 (2004). ArticleCASPubMed Google Scholar
Ahmadzadeh, M. & Rosenberg, S. A. IL-2 administration increases CD4+CD25hiFoxp3+ regulatory T cells in cancer patients. Blood107, 2409?2414 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kryczek, I. et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res.65, 465?472 (2005). CASPubMed Google Scholar
Klebanoff, C. A. et al. IL-15 enhances the in vivo antitumour activity of tumour-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA101, 1969?1974 (2004). ArticleCASPubMedPubMed Central Google Scholar
Melchionda, F. et al. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J. Clin. Invest.115, 1177?1187 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ruprecht, C. R. et al. Co-expression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J. Exp. Med.201, 1793?1803 (2005). ArticleCASPubMedPubMed Central Google Scholar
Verginis, P., Li, H. S. & Carayanniotis, G. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T cells. J. Immunol.174, 7433?7439 (2005). ArticleCASPubMed Google Scholar
Wakkach, A. et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity18, 605?617 (2003). ArticleCASPubMed Google Scholar
Lutz, M. B. & Schuler, G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol.23, 445?449 (2002). ArticleCASPubMed Google Scholar
Dhodapkar, M. V. & Steinman, R. M. Antigen-bearing immature dendritic cells induce peptide-specific CD8+ regulatory T cells in vivo in humans. Blood100, 174?177 (2002). ArticleCASPubMed Google Scholar
Lundqvist, A., Palmborg, A., Pavlenko, M., Levitskaya, J. & Pisa, P. Mature dendritic cells induce tumour-specific type 1 regulatory T cells. J. Immunother.28, 229?235 (2005). ArticleCASPubMed Google Scholar