Chronic Cerebral Hypoperfusion Promotes Amyloid-Beta Pathogenesis via Activating β/γ-Secretases (original) (raw)

References

  1. Mutsuga M, Chambers JK, Uchida K, Tei M, Makibuchi T, Mizorogi T, Takashima A, Nakayama H (2012) Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer’s brain. J Vet Med Sci 74(1):51–57
    Article CAS PubMed Google Scholar
  2. Shin J, Lee SY, Kim SH, Kim YB, Cho SJ (2008) Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer’s disease. Neuroimage 43(2):236–244
    Article PubMed Google Scholar
  3. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N et al (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100(17):10032–10037
    Article CAS PubMed PubMed Central Google Scholar
  4. Deibel SH, Weishaupt N, Regis AM, Hong NS, Keeley RJ, Balog RJ, Bye CM, Himmler SM, Whitehead SN, McDonald RJ (2016) Subtle learning and memory impairment in an idiopathic rat model of Alzheimer’s disease utilizing cholinergic depletions and beta-amyloid. Brain Res 1646:12–24
    Article CAS PubMed Google Scholar
  5. Soodi M, Saeidnia S, Sharifzadeh M, Hajimehdipoor H, Dashti A, Sepand MR, Moradi S (2016) Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer’s disease. Metab Brain Dis 31(2):395–404
    Article CAS PubMed Google Scholar
  6. Suganthy N, Malar DS, Devi KP (2016) Rhizophora mucronata attenuates beta-amyloid induced cognitive dysfunction, oxidative stress and cholinergic deficit in Alzheimer’s disease animal model. Metab Brain Dis 31(4):937–949
    Article CAS PubMed Google Scholar
  7. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608
    Article CAS PubMed PubMed Central Google Scholar
  8. Tamaoka A (2013) [The pathophysiology of Alzheimer’s disease with special reference to “amyloid cascade hypothesis”]. Rinsho Byori 61(11):1060–1069
    CAS PubMed Google Scholar
  9. Barage SH, Sonawane KD (2015) Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52:1–18
    Article CAS PubMed Google Scholar
  10. Solans A, Estivill X, de La Luna S (2000) A new aspartyl protease on 21q22.3, BACE2, is highly similar to Alzheimer’s amyloid precursor protein beta-secretase. Cytogenet Cell Genet 89(3–4):177–184
    Article CAS PubMed Google Scholar
  11. Sadleir KR, Kandalepas PC, Buggia-Prevot V, Nicholson DA, Thinakaran G, Vassar R (2016) Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Abeta generation in Alzheimer’s disease. Acta Neuropathol 132(2):235–256
    Article CAS PubMed PubMed Central Google Scholar
  12. Zhiyou C, Yong Y, Shanquan S, Jun Z, Liangguo H, Ling Y, Jieying L (2009) Upregulation of BACE1 and beta-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer’s disease. Neurochem Res 34(7):1226–1235
    Article PubMed Google Scholar
  13. Maloney B, Lahiri DK (2011) The Alzheimer’s amyloid beta-peptide (Abeta) binds a specific DNA Abeta-interacting domain (AbetaID) in the APP, BACE1, and APOE promoters in a sequence-specific manner: characterizing a new regulatory motif. Gene 488(1–2):1–12
    Article CAS PubMed PubMed Central Google Scholar
  14. Xu TH, Yan Y, Kang Y, Jiang Y, Melcher K, Xu HE (2016) Alzheimer’s disease-associated mutations increase amyloid precursor protein resistance to gamma-secretase cleavage and the Abeta42/Abeta40 ratio. Cell Discov 2:16026
    Article CAS PubMed PubMed Central Google Scholar
  15. Zhang N, Gordon ML, Goldberg TE (2017) Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease. Neurosci Biobehav Rev 72:168–175
    Article CAS PubMed Google Scholar
  16. Hanaoka T, Kimura N, Aso Y, Takemaru M, Kimura Y, Ishibashi M, Matsubara E (2016) Relationship between white matter lesions and regional cerebral blood flow changes during longitudinal follow up in Alzheimer’s disease. Geriatr Gerontol Int 16(7):836–842
    Article PubMed Google Scholar
  17. Lacalle-Aurioles M, Mateos-Perez JM, Guzman-De-Villoria JA, Olazaran J, Cruz-Orduna I, Aleman-Gomez Y, Martino ME, Desco M (2014) Cerebral blood flow is an earlier indicator of perfusion abnormalities than cerebral blood volume in Alzheimer’s disease. J Cereb Blood Flow Metab 34(4):654–659
    Article PubMed PubMed Central Google Scholar
  18. Toda N, Okamura T (2016) Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: implications for Alzheimer’s disease. J Pharmacol Sci 131(4):223–232
    Article CAS PubMed Google Scholar
  19. Leeuwis AE, Benedictus MR, Kuijer JP, Binnewijzend MA, Hooghiemstra AM, Verfaillie SC, Koene T, Scheltens P, Barkhof F, Prins ND et al (2017) Lower cerebral blood flow is associated with impairment in multiple cognitive domains in Alzheimer’s disease. Alzheimers Dement 131(5):531–540
    Article Google Scholar
  20. Hays CC, Zlatar ZZ, Wierenga CE (2016) The utility of cerebral blood flow as a biomarker of preclinical Alzheimer’s disease. Cell Mol Neurobiol 36(2):167–179
    Article CAS PubMed PubMed Central Google Scholar
  21. Li M, Zhang P, Wei HJ, Li MH, Zou W, Li X, Gu HF, Tang XQ (2017) Hydrogen sulfide ameliorates homocysteine-induced cognitive dysfunction by inhibition of reactive aldehydes involving upregulation of ALDH2. Int J Neuropsychopharmacol 20(4):305–315
    Google Scholar
  22. Zhao Y, Gu JH, Dai CL, Liu Q, Iqbal K, Liu F, Gong CX (2014) Chronic cerebral hypoperfusion causes decrease of O-GlcNAcylation, hyperphosphorylation of tau and behavioral deficits in mice. Front Aging Neurosci 6:10
    PubMed PubMed Central Google Scholar
  23. He J, Qiao JP, Zhu S, Xue M, Chen W, Wang X, Tempier A, Huang Q, Kong J, Li XM (2013) Serum beta-amyloid peptide levels spike in the early stage of Alzheimer-like plaque pathology in an APP/PS1 double transgenic mouse model. Curr Alzheimer Res 10(9):979–986
    Article CAS PubMed Google Scholar
  24. Neumann S, Schobel S, Jager S, Trautwein A, Haass C, Pietrzik CU, Lichtenthaler SF (2006) Amyloid precursor-like protein 1 influences endocytosis and proteolytic processing of the amyloid precursor protein. J Biol Chem 281(11):7583–7594
    Article CAS PubMed Google Scholar
  25. Singh I, Sagare AP, Coma M, Perlmutter D, Gelein R, Bell RD, Deane RJ, Zhong E, Parisi M, Ciszewski J et al (2013) Low levels of copper disrupt brain amyloid-beta homeostasis by altering its production and clearance. Proc Natl Acad Sci USA 110(36):14771–14776
    Article CAS PubMed PubMed Central Google Scholar
  26. Liang CC, Lin YH, Liu HL, Lee TH (2015) Bladder dysfunction induced by cerebral hypoperfusion after bilateral common carotid artery occlusion in rats. Neurourol Urodyn 34(6):586–591
    Article CAS PubMed Google Scholar
  27. Schiavon AP, Soares LM, Bonato JM, Milani H, Guimaraes FS, Weffort de Oliveira RM (2014) Protective effects of cannabidiol against hippocampal cell death and cognitive impairment induced by bilateral common carotid artery occlusion in mice. Neurotox Res 26(4):307–316
    Article CAS PubMed Google Scholar
  28. Huang Y, Fan S, Li J, Wang YL (2014) Bilateral common carotid artery occlusion in the rat as a model of retinal ischaemia. Neuroophthalmology 38(4):180–188
    Article CAS PubMed PubMed Central Google Scholar
  29. Speetzen LJ, Endres M, Kunz A (2013) Bilateral common carotid artery occlusion as an adequate preconditioning stimulus to induce early ischemic tolerance to focal cerebral ischemia. J Vis Exp 75:4387
    Google Scholar
  30. Surapaneni S, Prakash T, Ansari M, Manjunath P, Kotresha D, Goli D (2016) Study on cerebroprotective actions of Clerodendron glandulosumleaves extract against long term bilateral common carotid artery occlusion in rats. Biomed Pharmacother 80:87–94
    Article PubMed Google Scholar
  31. Kim DH, Choi BR, Jeon WK, Han JS (2016) Impairment of intradimensional shift in an attentional set-shifting task in rats with chronic bilateral common carotid artery occlusion. Behav Brain Res 296:169–176
    Article PubMed Google Scholar
  32. Wang X, Lin F, Gao Y, Lei H (2015) Bilateral common carotid artery occlusion induced brain lesions in rats: a longitudinal diffusion tensor imaging study. Magn Reson Imaging 33(5):551–558
    Article PubMed Google Scholar
  33. Fukuoka T, Hayashi T, Hirayama M, Maruyama H, Tanahashi N (2014) Cilostazol inhibits platelet-endothelial cell interaction in murine microvessels after transient bilateral common carotid artery occlusion. J Stroke Cerebrovasc Dis 23(5):1056–1061
    Article PubMed Google Scholar
  34. Han H, Qian Q, Yu Y, Zhao D, Sun G (2015) Lamotrigine attenuates cerebral ischemia-induced cognitive impairment and decreases beta-amyloid and phosphorylated tau in the hippocampus in rats. Neuroreport 26(12):723–727
    Article CAS PubMed Google Scholar
  35. Song B, Ao Q, Niu Y, Shen Q, Zuo H, Zhang X, Gong Y (2013) Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury. Neural Regen Res 8(26):2449–2457
    CAS PubMed PubMed Central Google Scholar
  36. Lee JS, Im DS, An YS, Hong JM, Gwag BJ, Joo IS (2011) Chronic cerebral hypoperfusion in a mouse model of Alzheimer’s disease: an additional contributing factor of cognitive impairment. Neurosci Lett 489(2):84–88
    Article CAS PubMed Google Scholar
  37. Reijmer YD, van Veluw SJ, Greenberg SM (2016) Ischemic brain injury in cerebral amyloid angiopathy. J Cereb Blood Flow Metab 36(1):40–54
    Article CAS PubMed PubMed Central Google Scholar
  38. Kojro E, Fahrenholz F (2005) The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell Biochem 38:105–127
    Article CAS PubMed Google Scholar
  39. Filippov MA, Dityatev A (2012) Matrix metalloproteinase-9 and non-amyloidogenic pathway of amyloid precursor protein processing. J Neurochem 121(2):181–183
    Article CAS PubMed Google Scholar
  40. Naslund J, Jensen M, Tjernberg LO, Thyberg J, Terenius L, Nordstedt C (1994) The metabolic pathway generating p3, an A beta-peptide fragment, is probably non-amyloidogenic. Biochem Biophys Res Commun 204(2):780–787
    Article CAS PubMed Google Scholar
  41. Bandyopadhyay S, Goldstein LE, Lahiri DK, Rogers JT (2007) Role of the APP non-amyloidogenic signaling pathway and targeting alpha-secretase as an alternative drug target for treatment of Alzheimer’s disease. Curr Med Chem 14(27):2848–2864
    Article CAS PubMed Google Scholar
  42. Bandyopadhyay S, Hartley DM, Cahill CM, Lahiri DK, Chattopadhyay N, Rogers JT (2006) Interleukin-1alpha stimulates non-amyloidogenic pathway by alpha-secretase (ADAM-10 and ADAM-17) cleavage of APP in human astrocytic cells involving p38 MAP kinase. J Neurosci Res 84(1):106–118
    Article CAS PubMed Google Scholar
  43. Grimm MO, Regner L, Mett J, Stahlmann CP, Schorr P, Nelke C, Streidenberger O, Stoetzel H, Winkler J, Zaidan SR et al (2016) Tocotrienol affects oxidative stress, cholesterol homeostasis and the amyloidogenic pathway in neuroblastoma cells: consequences for Alzheimer’s disease. Int J Mol Sci 17(11):1809
    Article PubMed Central Google Scholar
  44. Fisher CL, Resnick RJ, De S, Acevedo LA, Lu KP, Schroeder FC, Nicholson LK (2017) Cyclic cis-locked phospho-dipeptides reduce entry of AbetaPP into amyloidogenic processing pathway. J Alzheimers Dis 55(1):391–410
    Article CAS PubMed PubMed Central Google Scholar
  45. Sachse CC, Kim YH, Agsten M, Huth T, Alzheimer C, Kovacs DM, Kim DY (2013) BACE1 and presenilin/gamma-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels. FASEB J 27(6):2458–2467
    Article CAS PubMed PubMed Central Google Scholar
  46. Hogl S, Kuhn PH, Colombo A, Lichtenthaler SF (2011) Determination of the proteolytic cleavage sites of the amyloid precursor-like protein 2 by the proteases ADAM10, BACE1 and gamma-secretase. PLoS ONE 6(6):e21337
    Article CAS PubMed PubMed Central Google Scholar
  47. Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 100(11):6382–6387
    Article CAS PubMed PubMed Central Google Scholar
  48. Zhang YW, Luo WJ, Wang H, Lin P, Vetrivel KS, Liao F, Li F, Wong PC, Farquhar MG, Thinakaran G et al (2005) Nicastrin is critical for stability and trafficking but not association of other presenilin/gamma-secretase components. J Biol Chem 280(17):17020–17026
    Article CAS PubMed PubMed Central Google Scholar
  49. Huang KL, Lin KJ, Ho MY, Chang YJ, Chang CH, Wey SP, Hsieh CJ, Yen TC, Hsiao IT, Lee TH (2012) Amyloid deposition after cerebral hypoperfusion: evidenced on [(18)F]AV-45 positron emission tomography. J Neurol Sci 319(1–2):124–129
    Article CAS PubMed Google Scholar
  50. Daulatzai MA (2017) Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res 95(4):943–972
    Article Google Scholar
  51. Liang W, Zhang W, Zhao S, Li Q, Liang H, Ceng R (2015) Altered expression of neurofilament 200 and amyloid-beta peptide (1–40) in a rat model of chronic cerebral hypoperfusion. Neurol Sci 36(5):707–712
    Article PubMed Google Scholar
  52. Pimentel-Coelho PM, Michaud JP, Rivest S (2013) Effects of mild chronic cerebral hypoperfusion and early amyloid pathology on spatial learning and the cellular innate immune response in mice. Neurobiol Aging 34(3):679–693
    Article CAS PubMed Google Scholar
  53. Zhai Y, Yamashita T, Nakano Y, Sun Z, Shang J, Feng T, Morihara R, Fukui Y, Ohta Y, Hishikawa N (2016) et al Chronic cerebral hypoperfusion accelerates Alzheimer’s disease pathology with cerebrovascular remodeling in a novel mouse model. J Alzheimers Dis 53(3):893–905
    Article CAS PubMed Google Scholar
  54. Shang J, Yamashita T, Zhai Y, Nakano Y, Morihara R, Fukui Y, Hishikawa N, Ohta Y, Abe K (2016) Strong impact of chronic cerebral hypoperfusion on neurovascular unit, cerebrovascular remodeling, and neurovascular trophic coupling in Alzheimer’s disease model mouse. J Alzheimers Dis 52(1):113–126
    Article CAS PubMed Google Scholar
  55. Okamoto Y, Yamamoto T, Kalaria RN, Senzaki H, Maki T, Hase Y, Kitamura A, Washida K, Yamada M, Ito H (2012) et al Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol 123(3):381–394
    Article CAS PubMed Google Scholar
  56. Zhai Y, Yamashita T, Nakano Y, Sun Z, Morihara R, Fukui Y, Ohta Y, Hishikawa N, Abe K (2016) Disruption of white matter integrity by chronic cerebral hypoperfusion in Alzheimer’s disease mouse model. J Alzheimers Dis 52(4):1311–1319
    Article CAS PubMed Google Scholar
  57. ElAli A, Theriault P, Prefontaine P, Rivest S (2013) Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathol Commun 1:75
    Article PubMed PubMed Central Google Scholar
  58. Bennett SA, Pappas BA, Stevens WD, Davidson CM, Fortin T, Chen J (2000) Cleavage of amyloid precursor protein elicited by chronic cerebral hypoperfusion. Neurobiol Aging 21(2):207–214
    Article CAS PubMed Google Scholar

Download references