The Relationship Between Protein S-Nitrosylation and Human Diseases: A Review (original) (raw)

References

  1. Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA (2009) Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 11:2717–2739
    CAS PubMed Google Scholar
  2. Liu L, Yan Y, Zeng J, Hanes MA, Ahearn G, McMahon TJ, Dickfeld T, Marshall HE, Que LG, Stamler JS (2004) Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116:617–628
    CAS PubMed Google Scholar
  3. Baldelli S, Ciriolo MR (2016) Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging. Aging 8:3450–3467
    CAS PubMed PubMed Central Google Scholar
  4. Valek L, Heidler J, Scheving R, Wittig I, Tegeder I (2019) Nitric oxide contributes to protein homeostasis by S-nitrosylations of the chaperone HSPA8 and the ubiquitin ligase UBE2D. Redox Biol 20:217–235
    CAS PubMed Google Scholar
  5. Wu BW (2016) Peroxiredoxin-2 nitrosylation facilitates cardiomyogenesis of mouse embryonic stem cells via XBP-1s/PI3K pathway. Free Radic Biol Med 97:179–219
    CAS PubMed Google Scholar
  6. DelaTorre A, Schroeder RA, Kuo PC (1997) Alteration of NF-kappa B p50 DNA binding kinetics by S-nitrosylation. Biochem Biophys Res Commun 238:703–706
    CAS PubMed Google Scholar
  7. Li J (2016) Nitrosylated proteasome degradation pathway can inhibit the activity of cell cycle dependent protein kinase 5. Adv Physiol Sci 47:239
    Google Scholar
  8. Yang HN, Yan XQ, Lv LX, Han D, Hu SQ, Xu T (2019) Study on the mechanism of kainic acid-induced denitrosylation of Procaspase 3 in rat hippocampus CA1 region. Med J Commun 5:433–437
    Google Scholar
  9. Mannick JB, Hausladen A, Liu LM, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS (1999) Fas-induced caspase denitrosylation. Science 284:651–654
    CAS PubMed Google Scholar
  10. Mannick JB, Schonhoff CM, Papeta N, Ghafourifar P, Szibor M, Fang K, Gaston B (2001) S-Nitrosylation of mitochondrial caspases. J Cell Biol 154:1111–1116
    CAS PubMed PubMed Central Google Scholar
  11. Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O’Rourke B, Lowenstein JM, Pevsner J, Wagner DD, Lowenstein CJ (2003) Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115:139–150
    CAS PubMed PubMed Central Google Scholar
  12. Han T, Tang Y, Li J, Xue B, Gong L, Yu X, Liu C (2017) Nitric oxide donor protects against acetic acid-induced gastric ulcer in rats via S-nitrosylation of TRPV1on vagus nerve. Sci Rep 7:1898
    Google Scholar
  13. Kawashima S, Yokoyama M (2004) Dysfunctuon of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol 24:998–1005
    CAS PubMed Google Scholar
  14. Li J, Feng J, Wang X (2017) Regulation of vascular function by nitric oxide-related S-nitrosylation. Acta Physiol Sin 69:557–570
    Google Scholar
  15. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Giuffrida Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Neurosci 8:766–775
    CAS Google Scholar
  16. Murad F (1986) Cyclic guanosine-monophosphate as a mediator of vasodilation. J Clin Investig 78:1–5
    CAS PubMed Google Scholar
  17. Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM (2009) S-nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54:188–195
    CAS PubMed PubMed Central Google Scholar
  18. Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732
    CAS PubMed Google Scholar
  19. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811
    CAS PubMed PubMed Central Google Scholar
  20. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936
    CAS PubMed Google Scholar
  21. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166
    CAS PubMed Google Scholar
  22. Liang J, Cheng SL, Hou J, Xu Z, Zhao YL (2012) Car-Parinello molecular dynamics simulations of thionitroxide and S-nitrosothiol in the gas phase, methanol, and water—a theoretical study of S-nitrosylation. Sci China Chem 55:2081–2088
    CAS Google Scholar
  23. Hogg N (1999) The kinetics of S-transnitrosation—a reversible second-order reaction. Anal Biochem 272:257–262
    CAS PubMed Google Scholar
  24. Shi T, Chen M, Chen XP, Wang JT, Wan AJ, Zhao YL (2015) Molecular mechanism of protein S-nitrosylation and its disease correlation. Prog Chem 5:594–600
    Google Scholar
  25. Duan S, Chen C (2007) S-nitrosylation/denitrosylation and apoptosis of immune cells. Cell Mol Immunol 4:353–358
    CAS PubMed Google Scholar
  26. Lima B, Forrester MT, Hess DT, Stamler JS (2010) S-nitrosylation in cardiovascular signaling. Cric Res 106:633–646
    CAS Google Scholar
  27. Forrester MT, Foster MW, Stamler JS (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J Biol Chem 282:13977–13983
    CAS PubMed Google Scholar
  28. Cao Y, Gomes SA, Rangel EB, Paulino EC, Fonseca TL, Li JL, Teixeira MB, Gouveia CHA, Bianco AC, Kapiloff MS, Balkan W, Hare JM (2015) S-nitrosoglutathione reductase–dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis. J Clin Investig 125:1679–1691
    PubMed Google Scholar
  29. Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA (2007) Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols. Biochemistry 46:8472–8483
    CAS PubMed Google Scholar
  30. Stoyanovsky DA, Tyurina YY, Tyurin VA, Anand D, Mandavia DN, Gius D, Ivanova J, Pitt B, Billiar TR, Kagan VE (2005) Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols. J Am Chem Soc 127:15815–15823
    CAS PubMed Google Scholar
  31. Kelleher ZT, Sha Y, Foster MW, Foster WM, Forrester MT, Marshall HE (2014) Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation. J Biol Chem 289:3066–3072
    CAS PubMed Google Scholar
  32. Chen YL, Liu RH, Zhang GW, Yu Q, Jia M, Zheng C, Wang YL, Xu CB, Zhang YP, Liu EQ (2015) Hypercysteinemia promotes atherosclerosis by reducing protein S-nitrosylation. Biomed Pharmacother 70:253–259
    CAS PubMed Google Scholar
  33. Li J, Zhang Y, Zhang YY, Lu SL, Miao YT, Yang J, Huang SM, Ma XL, Han LL, Deng JC, Fan FF, Liu B, Huo Y, Xu QB, Chen C, Wang X, Feng J (2018) GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation. Redox Biol 17:386–399
    CAS PubMed PubMed Central Google Scholar
  34. Jankov RP, Daniel KL, Iny S, Kantores C, Ivanovska J, Fadel NB, Jain A (2018) Sodium nitrite augments lung S-nitrosylation and reverses chronic hypoxic pulmonary hypertension in juvenile rats. Am J Physiol Lung Cell Mol Physiol 315:L742–L751
    CAS PubMed Google Scholar
  35. Jiang H, Song N, Wang J, Ren LY, Xie JX (2007) Peripheral iron dextran induced degeneration of dopaminergic neurons in rat substantia nigra. Neurochem Int 51:32–36
    CAS PubMed Google Scholar
  36. Roth JA, Singleton S, Feng J, Garrick M, Paradkar PN (2010) Parkin regulates metal transport via proteasomal degradation of the 1B isoforms of divalent metal transporter 1. J Neurochem 113:454–464
    CAS PubMed Google Scholar
  37. Bi MX, Du XX, Jiao Q, Liu ZG, Jiang H (2020) α-Synuclein regulates iron homeostasis via preventing parkin-mediated DMT1 ubiquitylation in Parkinson’s disease models. ACS Chem Neurosci 11:1682–1691
    CAS PubMed Google Scholar
  38. Liu C, Zhang CW, Lo SQ, Ang ST, Chew KCM, Yu DJ, Chai BH, Tan B, Tsang F, Tai YK, Tan BWQ, Liang MC, Tan HT, Tang JY, Lai MKP, Chua JJE, Chung MCM, Khanna S, Lim K, Soong TW (2018) S-nitrosylation of divalent metal transporter 1 enhances iron uptake to mediate loss of dopaminergic neurons and motoric deficit. J Neurosci 38:8364–8377
    CAS PubMed PubMed Central Google Scholar
  39. Yao DD, Gu ZZ, Nakamura T, Shi ZQ, Ma YL, Gaston B, Palmer LA, Rockenstein E, Zhang ZH, Masliah E, Uehara T, Lipton SA (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA 101:10810–10814
    CAS PubMed Google Scholar
  40. Yin L, Xie YY, Yin SY, Lv XL, Zhang J, Gu ZZ, Sun HD, Liu SQ (2015) The S-nitrosylation status of PCNA localized in cytosol impacts the apoptotic pathway in a Parkinson’s disease paradigm. PLoS One 10:e0117546
    PubMed PubMed Central Google Scholar
  41. Calabrese V, Santoro A, Monti D, Crupi R, Di Paola R, Latteri S, Cuzzocrea S, Zappia M, Giordano J, Calabrese EJ, Franceschi C (2018) Aging and Parkinson’s disease: inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med 115:80–91
    CAS PubMed Google Scholar
  42. Kumar R, Jangir DK, Verma G, Shekhar S, Hanpude P, Kumar S, Kumari R, Singh N, Bhavesh NS, Jana NR, Maiti TK (2017) S-nitrosylation of UCHL1 induces its structural instability and promotes α-synuclein aggregation. Sci Rep 7:44558
    CAS PubMed PubMed Central Google Scholar
  43. Hedrich K, Djarmati A, Schafer N, Hering R, Wellenbrock C, Weiss PH, Hilker R, Vieregge P, Ozelius LJ, Heutink P, Bonifati V, Schwinger E, Lang AE, Noth J, Bressman S, Pramstaller PP, Riess O, Klein C (2004) DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 62:389–394
    CAS PubMed Google Scholar
  44. Kumar R, Kumari R, Kumar S, Jangir DK, Maiti TK (2018) Extracellular α-synuclein disrupts membrane nanostructure and promotes S-nitrosylation induced neuronal cell death. Biomacromolecules 19:1118–1129
    CAS PubMed Google Scholar
  45. Oh C, Sultan A, Platzer J, Dolatabadi N, Soldner F, Mcclatchy DB, Diedrich JK, Yates JR, Ambasudhan R, Nakamura T, Jaenisch R, Lipton SA (2017) S-nitrosylation of PINK1 attenuates PINK1/Parkin dependent mitophagy in hiPSC-based Parkinson’s disease models. Cell Rep 21:2171–2182
    CAS PubMed PubMed Central Google Scholar
  46. Wilkaniec A, Lenkiewicz AM, Czapski GA, Jeśko H, Hilgier W, Brodzik R, Gąssowskadobrowolska M, Culmsee C, Adamczyk A (2019) Extracellular alpha-synuclein oligomers induce Parkin S-nitrosylation: relevance to sporadic Parkinson’s disease etiopathology. Mol Neurobiol 56:125–140
    CAS PubMed Google Scholar
  47. Zhang ZZ, Liu L, Jiang XX, Zhai SD, Xing D (2016) The essential role of Drp1 and its regulation by S-nitrosylation of Parkin in dopaminergic neurodegeneration: implications for Parkinson’s disease. Antioxid Redox Signal 25:609–622
    CAS PubMed Google Scholar
  48. Ryu I, Lee K, Do S (2016) Aβ-affected pathogenic induction of S-nitrosylation of OGT and identifification of Cys-NO linkage triplet. Biochim Biophys Acta 1864:609–621
    CAS PubMed Google Scholar
  49. Masliah E (1995) Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol Histopathol 10:509–519
    CAS PubMed Google Scholar
  50. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384
    CAS PubMed Google Scholar
  51. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980
    CAS PubMed Google Scholar
  52. Nakamura T, Lipton SA (2017) ‘SNO’-storms compromise protein activity and mitochondrial metabolism in neurodegenerative disorders. Trends Endocrinol Metab 28:879–892
    CAS PubMed PubMed Central Google Scholar
  53. Bak DW, Pizzagalli MD, Weerapana E (2017) Identifying functional cysteine residues in the mitochondria. ACS Chem Biol 12:947–957
    CAS PubMed PubMed Central Google Scholar
  54. Chouchani ET, Hurd TR, Nadtochiy SM, Brookes PS, Fearnley IM, Lilley KS, Smith RA, Murphy MP (2010) Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem J 430:49–59
    CAS PubMed PubMed Central Google Scholar
  55. Doulias PT, Tenopoulou M, Greene JL, Raju K, Ischiropoulos H (2013) Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci Signal 6:rs1
    PubMed PubMed Central Google Scholar
  56. Lee YI, Giovinazzo D, Kang HC, Lee Y, Jeong JS, Doulias PT, Xie Z, Hu J, Ghasemi M, Ischiropoulos H, Qian J, Zhu H, Blackshaw S, Dawson VL, Dawson TM (2014) Protein microarray characterization of the S-nitrosoproteome. Mol Cell Proteom 13:63–72
    CAS Google Scholar
  57. Piantadosi CA (2012) Regulation of mitochondrial processes by protein S-nitrosylation. Biochem Biophys Acta 1820:712–721
    CAS PubMed Google Scholar
  58. Seneviratne U, Nott A, Bhat VB, Ravindra KC, Wishnok JS, Tsai LH, Tannenbaum SR (2016) S-nitrosation of proteins relevant to Alzheimer’s disease during early stages of neurodegeneration. Proc Natl Acad Sci USA 113:4152–4157
    CAS PubMed Google Scholar
  59. Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163
    CAS PubMed Google Scholar
  60. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57:695–703
    CAS PubMed Google Scholar
  61. Xu PF, Ye SY, Li KY, Huang MQ, Wang QL, Zeng SS, Chen X, Gao WW, Chen JP, Zhang QB, Zhong Z, Lin Y, Rong ZL, Xu Y, Hao BT, Peng AH, Ouyang MZ, Liu QZ (2019) NOS1 inhibits the interferon response of cancer cells by S-nitrosylation of HDAC2. J Exp Clin Cancer Res 38:1–16
    CAS Google Scholar
  62. Laurence Z, Lorenzo G, Oliver K, Smyth MJ, Guido K (2015) Type I interferons in anticancer immunity. Nat Rev Immunol 15:405–414
    Google Scholar
  63. Minn AJ (2015) Interferons and the immunogenic effects of cancer therapy. Trends Immunol 36:725–737
    CAS PubMed PubMed Central Google Scholar
  64. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28:15–33
    PubMed Google Scholar
  65. Bukholm IRK, Nesland JM, Karesen R, Jacobsen U, Borresendale AL (1998) E-cadherin and α-, β-, and γ-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol 185:262–266
    CAS PubMed Google Scholar
  66. Bajpai S, Feng YF, Krishnamurthy R, Longmore GD, Wirtz D (2009) Loss of alpha-catenin decreases the strength of single E-cadherin bonds between human cancer cells. J Biol Chem 284:18252–18259
    CAS PubMed PubMed Central Google Scholar
  67. Yoshida R, Kimura N, Harada Y, Ohuchi N (2001) The loss of E-cadherin, α- and β-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer. Int J Oncol 18:513–520
    CAS PubMed Google Scholar
  68. Basudhardebashree S, Almeida DO, Kesarwalaaparna HL, Chengrobert YS, Glynnsharon A, Ambsstefan WA, Ridnourlisa A (2017) Nitric oxide synthase-2-derived nitric oxide drives multiple pathways of breast cancer progression. Antioxid Redox Signal 26:1044–1058
    CAS Google Scholar
  69. Switzer CH, Glynn SA, Cheng RYS, Ridnour LA, Green JE, Ambs S, Wink DA (2012) S-nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer. Mol Cancer Res 10:1203–1215
    CAS PubMed PubMed Central Google Scholar
  70. Zhou SL, Han QL, Wang R, Li X, Wang QY, Wang HZ, Wang J, Ma YF (2016) PRDX2 protects hepatocellular carcinoma SMMC-7721 cells from oxidative stress. Oncol Lett 12:2217–2221
    CAS PubMed PubMed Central Google Scholar
  71. Mullen L, Hanschmann EM, Lillig CH, Herzenberg LA, Ghezzi P (2015) Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal releasethrough a novel mechanism of redox-dependent secretion. Mol Med 21:98–108
    CAS PubMed PubMed Central Google Scholar
  72. Saito S, Furuno A, Sakurai J, Park H, Shinya K, Tomida A (2012) Compound C prevents the unfolded protein response during glucose deprivation through a mechanism independent of AMPK and BMP signaling. PLoS One 7:e45845
    CAS PubMed PubMed Central Google Scholar
  73. Lee CW, Wong LL, Tse EYT, Liu HF, Leong VY, Lee JM, Hardie DG, Ng IO, Ching Y (2012) AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Can Res 72:4394–4404
    CAS Google Scholar
  74. Zhang YH, Sun CN, Xiao GK, Shan H, Tang LY, Yi YJ, Yu WG, Gu YC (2019) S-nitrosylation of the Peroxiredoxin-2 promotes S-nitrosoglutathione-mediated lung cancer cells apoptosis via AMPK-SIRT1 pathway. Cell Death Dis 10:329
    CAS PubMed PubMed Central Google Scholar
  75. Pan LH, Lin Z, Tang X, Tian JX, Zheng Q, Jing J, Xie LP, Chen HS, Lu QL, Wang H, Li QG, Han Y, Ji Y (2020) S-nitrosylation of plastin-3 exacerbates thoracic aortic dissection formation via endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol 40:175–188
    CAS PubMed Google Scholar
  76. Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928
    CAS PubMed Google Scholar
  77. Connuck DM, Sleeper LA, Colan SD, Cox GF, Towbin JA, Lowe AM, Wilkinson JD, Orav EJ, Cuniberti L, Salbert BA, Lipshultz SE (2008) Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: a comparative study from the Pediatric Cardiomyopathy Registry. Am Heart J 155:998–1005
    PubMed PubMed Central Google Scholar
  78. Lillo MA, Himelman E, Shirokova N, Xie LF, Fraidenraich D, Contreras JE (2019) S-nitrosylation of connexin43 hemichannels elicits cardiac stress-induced arrhythmias in Duchenne muscular dystrophy mice. JCI Insight 4:e130091
    PubMed Central Google Scholar
  79. Dai Y, Wang H, Ogawa A, Yamanaka H, Obata K, Tokunaga A, Noguchi K (2005) Ca2+/calmodulin-dependent protein kinase II in the spinal cord contributes to neuropathic pain in a rat model of mononeuropathy. Eur J Neurosci 21:2467–2474
    PubMed Google Scholar
  80. Coultrap SJ, Buard I, Kulbe JR, Dell'Acqua ML, Bayer KU (2010) CaMKII Autonomy is substrate-dependent and further stimulated by Ca(2+)/calmodulin. J Biol Chem 285:17930–17937
    CAS PubMed PubMed Central Google Scholar
  81. Song T, Hatano N, Kambe T, Miyamoto Y, Ihara H, Yamamoto H, Sugimoto K, Kume K, Yamaguchi F, Tokuda M, Watanabe Y (2008) Nitric oxide-mediated modulation of calcium/calmodulin-dependent protein kinase II. Biochem J 412:223–231
    CAS PubMed Google Scholar
  82. Coultrap SJ, Bayer KU (2014) Nitric oxide induces Ca2+-independent activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII). J Biol Chem 289:19458–19465
    CAS PubMed PubMed Central Google Scholar
  83. Coultrap SJ, Zaegel V, Bayer KU (2014) CaMKII isoforms differ in their specific requirements for nitric oxide regulation. FEBS Lett 588:4672–4676
    CAS PubMed PubMed Central Google Scholar
  84. Calabrese V, Santoro A, Salinaro AT, Modafferi S, Scuto M, Albouchi F, Monti D, Giordano J, Zappia M, Franceschi C, Calabrese EJ (2018) Hormetic approaches to the treatment of Parkinson’s disease: perspectives and possibilities. J Neurosci Res 96:1641–1662
    CAS PubMed Google Scholar
  85. Pilipenko V, Narbute K, Amara I, Trovato A, Scuto M, Pupure J, Jansone B, Poikans J, Bisenieks E, Klusa V, Calabrese V (2019) GABA-containing compound gammapyrone protects against brain impairments in Alzheimer’s disease model male rats and prevents mitochondrial dysfunction in cell culture. J Neurosci Res 97:708–726
    CAS PubMed Google Scholar
  86. Peters V, Calabrese V, Forsberg E, Volk N, Fleming T, Baelde H, Weigand T, Thiel C, Trovato A, Scuto M, Modafferi S, Schmitt CP (2018) Protective actions of anserine under diabetic conditions. Int J Mol Sci 19:2751
    PubMed Central Google Scholar
  87. Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC (2019) Health benefits of resveratrol: evidence from clinical studies. Med Res Rev 39:1851–1891
    CAS Google Scholar
  88. Di Rosa G, Brunetti G, Scuto M, Salinaro AT, Calabrese EJ, Crea R, Schmitz-Linneweber C, Calabrese V, Saul N (2020) Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models. Int J Mol Sci 21:3893
    PubMed Central Google Scholar
  89. Brunetti G, Di Rosa G, Scuto M, Leri M, Stefani M, Schmitz-Linneweber C, Calabrese V, Saul N (2020) Healthspan maintenance and prevention of Parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. Int J Mol Sci 21:2588
    CAS PubMed Central Google Scholar
  90. Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M (2020) Healthy effects of plant polyphenols: molecular mechanisms. Int J Mol Sci 21:1250
    CAS PubMed Central Google Scholar
  91. Neurauter G, Schrocksnadel K, Scholl-Burgi S, Sperner-Unterweger B, Schubert C, Ledochowski M, Fuchs D (2008) Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab 9:622–627
    CAS PubMed Google Scholar
  92. Miquel S, Champ C, Day J, Aarts E, Bahr BA, Bakker M, Bánáti D, Calabrese V, Cederholm T, Cryan J, Dye L, Farrimon JA, Korosi A, Layé S, Maudsley S, Milenkovic D, Mohajeri MH, Sijben J, Solomon A, Spencer JPE, Thuret S, Berghe WV, Vauzour D, Vellas B, Wesnes K, Willatts P, Wittenberg R, Geurts L (2017) Poor cognitive ageing: vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Res Rev 42:40–55
    PubMed Google Scholar
  93. Stebbing ARD (1982) Hormesis—the stimulation of growth by low-levels of inhibitors. Sci Total Environ 22:213–234
    CAS PubMed Google Scholar
  94. Navarro A, Boveris A (2008) Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidants. Adv Drug Deliv Rev 60:1534–1544
    CAS PubMed Google Scholar
  95. Calabrese EJ, Calabrese V, Tsatsakis A, Giordano JJ (2020) Hormesis and Ginkgo biloba (GB): numerous biological effects of GB are mediated via hormesis. Ageing Res Rev 10:101019
    Google Scholar

Download references