Evolving Strategies for Target Selection for Antibody-Drug Conjugates (original) (raw)
Krall N, Scheuerman J, Neri D. Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries. Angew Chem Int Ed. 2013;52:1384–402. ArticleCAS Google Scholar
Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. NEJM. 2012;367(19):1783–91. ArticleCASPubMed Google Scholar
Hurvitz SA, Dirix L, Kocsis J, Bianchi GV, Lu J, Vinholes J, et al. Phase II randomized study of Trastuzumab emtansine versus Trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer. J Clin Oncol. 2013;31(9):1157–63. ArticleCASPubMed Google Scholar
Mullard A. Maturing antibody-drug conjugate pipeline hits 30. Nat Rev Drug Discov. 2013;12:329–32. ArticleCASPubMed Google Scholar
Sapra P, Hooper AT, O’Donnell CJ, Gerber HP. Investigational antibody drug conjugates for solid tumors. Expert Opin Investig drugs. 2011;20:1131–49. ArticleCASPubMed Google Scholar
Burris HA, Gordon MS, Gerber DE, Spigel DR, Mendelson DS, Schiller JH, et al. A Phase 1 study of DNIB0600A, an Antibody-Drug Conjugate (ADC) Targeting NaPi2b, in Patients (Pts) with Non-Small Cell Lung Cancer (NSCLC) or Platinum-Resistant Ovarian Cancer (OC). J Clin Oncol 2014, 32:5s Supplement, Abstract 2504.
Sapra P, Damelin M, Dijoseph J, Marquette K, Geles KG, Golas J, et al. Long-term tumor regression induced by an antibody-drug conjugate that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells. Mol Cancer Ther. 2013;12(1):38–47. doi:10.1158/1535-7163.MCT-12-0603. ArticleCASPubMed Google Scholar
Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20. doi:10.1038/ng.2764. ArticlePubMed Central Google Scholar
GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5. Article Google Scholar
Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42. ArticlePubMed Google Scholar
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. doi:10.1038/nature11003. Erratum in: Nature. 2012 Dec 13;492(7428):290. ArticlePubMed CentralCASPubMed Google Scholar
Polson AG, Yu SF, Elkins K, Zheng B, Clark S, Ingle GS, et al. Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood. 2007;110:616–23. doi:10.1182/blood-2007-01-066704. ArticleCASPubMed Google Scholar
Gerber DE, Infante JR, Gordon MS, Schiller JH, Spigel D, Wang Y et al. Safety, Pharmacokinetics, and Activity of the Anti-NaPi2b Antibody-Drug Conjugate DNIB0600A: A Phase I Study in Patients with Non-Small Cell Lung Cancer and Platinum-Resistant Ovarian Cancer. IASLC World Lung, Sydney, Australia, Oct 27–30, 2013.
Strassberger V, Trussel S, Fugmann T, Neri D, Roesli C. A novel reactive ester derivative of biotin with reduced membrane permeability for in vivo biotinylation experiments. Proteomics. 2010;10(19):3544–8. ArticleCASPubMed Google Scholar
Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazine chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003;21(6):660–6. ArticleCASPubMed Google Scholar
Fujiki Y, Hubbard AL, Fowler S, Lazarow PB. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982;93(1):97–102. ArticleCASPubMed Google Scholar
Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborksa A, et al. The quantitative proteome of a human cell line. Mol Syst Biol. 2011;7:549. ArticlePubMed CentralPubMed Google Scholar
Lu P, Vogel C, Wang R, Yao X, Marcotte M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol. 2007;25(1):117–24. ArticleCASPubMed Google Scholar
Danila DC, Szmuelwitz RZ, Baron AD, Higano CS, Scher HI, Morris MJ, et al. A Phase I Study of DSTP3086S, an Antibody-Drug Conjugate (ADC) targeting STEAP-1, in Patients (Pts) with Metastatic Castration-Resitant Prostate Cancer (CRPC). J Clin Oncol 2014; 32:5s Suppl; Abstract 5024.
Burris HA, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, et al. Phase II study of the antibody drug conjugate Trastuzumab-DM1 for the treatment of human epidermal growth factor receptor (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol. 2011;29(4):298–405. Article Google Scholar
Krop IE, LoRusso P, Miller KD, Modi S, Yardley D, Rodriguez G, et al. A phase II study of Trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer Who were previously treated with Trastuzumab, Lapatinib, an anthracycline, a taxane and capecitabine. J Clin Oncol. 2012;30(26):3234–41. ArticleCASPubMed Google Scholar
Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12. ArticleCASPubMed Google Scholar
Dijoseph JF, Dougher MM, Armellino DC, Evans DY, Damle NK. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia. 2007;21(11):2240–5. ArticleCASPubMed Google Scholar
Fromm JR, McEarchern JA, Kennedy D, Thomas A, Shustov AR, Gopal AK. Clinical binding properties, internalization kinetics, and clinicopathologic activity of brentuximab vedotin: an antibody-drug conjugate for CD30-positive lymphoid neoplasms. Clin Lymhoma Myeloma Leuk. 2012;12(4):280–3. ArticleCAS Google Scholar
Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9. doi:10.1200/JCO.2011.38.0410. ArticlePubMed CentralCASPubMed Google Scholar
Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6. doi:10.1200/JCO.2011.38.0402. ArticleCASPubMed Google Scholar
Tijink BM, Buter J, de Bree R, Giaccone G, Lang MS, Staab A, et al. A phase IDose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res. 2006;12(20):6064–72. doi:10.1158/1078-0432.CCR-06-0910. ArticleCASPubMed Google Scholar
Boswell CA, Mundo EE, Firestein R, Zhang C, Mao W, Gill H, et al. An integrated approach toidentify normal tissue expression of targets for antibody-drug conjugates: case study of TENB2. Br J Pharm. 2013;168:445–57. doi:10.1111/j.1476-5381.2012.02138.x. ArticleCAS Google Scholar
Perrino E, Steiner M, Krall N, Bernardes GJ, Pretto F, Casi G, et al. Curative properties of noninternalizing antibody–drug conjugates based on maytansinoids. Cancer Res. 2014;74(9):2569–78. doi:10.1158/0008-5472.CAN-13-2990. ArticleCASPubMed Google Scholar
Ingle GS, Chan P, Elliott JM, Chang WS, Koeppen H, Stephan JP, et al. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br J Haematol. 2008;140(1):46–58. PubMed CentralCASPubMed Google Scholar
Shi F, Sottile J. Caveolin-1-dependent 1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci. 2008;121:2360–71. ArticlePubMed CentralCASPubMed Google Scholar
Muro S, Mateescu M, Gajewski C, Robinson M, Muzykantov VR, Koval M. Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins. Am J Physiol Lung Cell Mol Physiol. 2006;290:L809–17. doi:10.1152/ajplung.00311.2005. ArticleCASPubMed Google Scholar
Du J, Chen X, Liang X, Zhang G, Xu J, He L, et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc Natl Acad Sci. 2011;108(23):9466–71. ArticlePubMed CentralCASPubMed Google Scholar
Golfier S, Kopitz C, Kahnert A, Heisler I, Schatz CA, Stelte-Ludwig B, et al. Anetumab ravtansine - a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol Cancer Ther. 2014;13(6):1537–48. ArticleCASPubMed Google Scholar
Govindan SV, Cardillo TM, Moon SJ, Hansen HJ, Goldenberg DM. CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res. 2009;15(19):6052–61. doi:10.1158/1078-0432.CCR-09-0586. ArticlePubMed CentralCASPubMed Google Scholar
Kelly RK, Olson DL, Sun Y, Wen D, Wortham KA, Antognetti G, et al. An antibody-cytotoxic conjugate, BIIB015, is a new targeted therapy for Cripto positive tumours. Eur J Cancer. 2011;47(11):1736–46. doi:10.1016/j.ejca.2011.02.023. ArticleCASPubMed Google Scholar
Sausville E, LoRusso P, Quinn M, Forman K, Leamon C, Morganstern D, et al. A phase I study of EC145 administered weeks 1 and 3 of a 4-week cycle in patients with refractory solid tumors. J Clin Oncol. 2007;25(18S):2577. Google Scholar
Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469–87. ArticlePubMed CentralCASPubMed Google Scholar
Phillips GD, Fields CT, Li G, Dowbenko D, Schaefer G, Miller K, et al. Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: critical role for neuregulin blockade in antitumor response to combination therapy. Clin Cancer Res. 2014;20(2):456–68. doi:10.1158/1078-0432.CCR-13-0358. ArticleCASPubMed Google Scholar
Tan X, Lu B, Jin G, Wang F, Myers J, Musto S, et al. Antibody-drug conjugates with modified linker-payloads overcome resistance to a trastuzumab-maytansinoid conjugate in multiple cultured tumor cell models. AACR Annual Meeting 2014, Abstract #1830.
Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL, et al. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem. 2006;17:114–24. ArticleCASPubMed Google Scholar
Sapra P, Stein R, Pickett J, Qu Z, Govindan SV, Cardillo TM, et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res. 2005;11(14):5257–64. ArticleCASPubMed Google Scholar
Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8(10):806–23. doi:10.1038/nrd2137. ArticleCASPubMed Google Scholar
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer and cancer stem cells. Nature. 2001;414:105–11. ArticleCASPubMed Google Scholar
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumors: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68. ArticleCASPubMed Google Scholar
Gerber HP, Senter PD, Grewal IS. Antibody drug-conjugates targeting the tumor vasculature: current and future developments. mAbs. 2009;1(3):247–53. ArticlePubMed CentralPubMed Google Scholar
Ostermann E, Garin-Chesa P, Heider KH, Kalat M, Lamche H, Puri C, et al. Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin Cancer Res. 2008;14(14):4584–92. doi:10.1158/1078-0432.CCR-07-5211. ArticleCASPubMed Google Scholar
Bernardes GJ, Casi G, Trussel S, Hartmann I, Schwager K, Scheuermann J, et al. A traceless vascular-targeting antibody-drug conjugate for cancer therapy. Angew Chem Int Ed Engl. 2012;51(4):941–4. ArticleCASPubMed Google Scholar
Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59(13):3192–8. CASPubMed Google Scholar
Gutbrodt KL, Schliemann C, Giovannoni L, Frey K, Pabst T, Klapper W, et al. Antibody-based delivery of interleukin-2 to neovasculature has potent activity against acute myeloid leukemia. Sci Transl Med. 2013;5(201):201ra118. doi:10.1126/scitranslmed.3006221. ArticlePubMed Google Scholar
Sauer S, Erba PA, Petrini M, Menrad A, Giovannoni L, Grana C, et al. Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood. 2009;113(10):2265–74. doi:10.1182/blood-2008-06-160416. ArticleCASPubMed Google Scholar
Chen Y, Clark S, Wong T, Chen Y, Chen Y, Dennis MS, et al. Armed antibodies targeting the mucin repeats of the ovarian cancer antigen, MUC16, Are highly efficacious in animal tumor models. Cancer Res. 2007;67:4924–32. ArticleCASPubMed Google Scholar
Pak Y, Zhang Y, Pastan I, Lee B. Antigen shedding May improve efficiencies for delivery of antibody-based anticancer agents in solid tumors. Cancer Res. 2012;72:3143–52. ArticlePubMed CentralCASPubMed Google Scholar
Shih SC, Sloper-Mould KE, Hicke L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 2000;19:187–98. ArticlePubMed CentralCASPubMed Google Scholar
Wright Jr GL, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D, et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1996;48(2):326–34. ArticlePubMed Google Scholar
Ma D, Hopf CE, Malewicz AD, Donovan GP, Senter PD, Goeckeler WF, et al. Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin Cancer Res. 2006;12(8):2591–6. ArticleCASPubMed Google Scholar
Amato RJ, Stepankiw M. Evaluation of MVA-5 T4 as a novel immunotherapeutic vaccine in colorectal, renal and prostate cancer. Future Oncol. 2012;8(3):231–7. doi:10.2217/fon.12.7. ArticleCASPubMed Google Scholar
Forsberg G, Skartved NJ, Wallén-Ohman M, Nyhlén HC, Behm K, Hedlund G, et al. Naptumomab estafenatox, an engineered antibody-superantigen fusion protein with low toxicity and reduced antigenicity. J Immunother. 2010;33(5):492–9. doi:10.1097/CJI.0b013e3181d75820. ArticlePubMed Google Scholar
Hole N, Stern PL. Isolation and characterization of 5T4, a tumour-associated antigen. Int J Cancer. 1990;45:179–84. ArticleCASPubMed Google Scholar
Barrow KM, Ward CM, Rutter J, Ali S, Stern PL. Embryonic expression of murine 5T4 oncofoetal antigen is associated with morphogenetic events at implantation and in developing epithelia. Dev Dyn. 2005;233(4):1535–45. ArticleCASPubMed Google Scholar
Damelin M, Geles KG, Follettie MT, Yuan P, Baxter M, Golas J, et al. Delineation of a cellular hierarchy in lung cancer reveals an oncofetal antigen expressed on tumor-initiating cells. Cancer Res. 2011;71:4236–46. ArticleCASPubMed Google Scholar
Naganuma H, Kono K, Mori Y, Takayoshi S, Stern PL, Tasaka K, et al. Oncofetal antigen 5T4 expression as a prognostic factor in patients with gastric cancer. Anticancer Res. 2002;22(2B):1033–8. CASPubMed Google Scholar
Starzynska T, Marsh PJ, Schofield PF, Roberts SA, Myers KA, Stern PL. Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma. Br J Cancer. 1994;69(5):899–902. ArticlePubMed CentralCASPubMed Google Scholar
Wrigley E, McGown AT, Rennison J, Swindell R, Crowther D, Starzynska T, et al. 5T4 oncofetal antigen expression in ovarian carcinoma. Int J Gynecol Cancer. 1995;5(4):269–74. ArticlePubMed Google Scholar
Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL, et al. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res. 2007;67(23):11254–62. ArticleCASPubMed Google Scholar
Spencer HL, Eastham AM, Merry CL, Southgate TD, Perez-Campo F, Soncin F, et al. E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells. Mol Biol Cell. 2007;18(8):2838–51. ArticlePubMed CentralCASPubMed Google Scholar
Carsberg CJ, Myers KA, Stern PL. Metastasis-associated 5T4 antigen disrupts cell-cell contacts and induces cellular motility in epithelial cells. Int J Cancer. 1996;68(1):84–92. ArticleCASPubMed Google Scholar
Kagermeier-Schenk B, Wehner D, Ozhan-Kizil G, Yamamoto H, Li J, Kirchner K, et al. Waif1/5T4 inhibits Wnt/β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization. Dev Cell. 2011;21(6):1129–43. doi:10.1016/j.devcel.2011.10.015. ArticleCASPubMed Google Scholar
Gromova P, Ralea S, Lefort A, Libert F, Rubin BP, Erneux C, et al. Kit K641E oncogene up-regulates Sprouty homolog 4 and trophoblast glycoprotein in interstitial cells of Cajal in a murine model of gastrointestinal stromal tumours. J Cell Mol Med. 2009;13(8A):1536–48. doi:10.1111/j.1582-4934.2009.00768.x. ArticlePubMed CentralCASPubMed Google Scholar
McGinn OJ, Marinov G, Sawan S, Stern PL. CXCL12 receptor preference, signal transduction, biological response and the expression of 5T4 oncofoetal glycoprotein. J Cell Sci. 2012;125(Pt 22):5467–78. doi:10.1242/jcs.109488. ArticleCASPubMed Google Scholar
Sagert J, West J, Wong C, Desnoyers L, Vasiljeva O, Richardson J, et al. Transforming Notch ligands into tumor-antigen targets: a Probody-Drug Conjugate (PDC) targeting Jagged 1 and Jagged 2. AACR Annual Meeting, 2014, Abstract #2665.
Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–32. doi:10.1038/nbt.1480. ArticleCASPubMed Google Scholar
Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013;20:161–7. ArticleCASPubMed Google Scholar
Thomas J, Yurkovetskiy A, Bodyak N, et al. Polyacetal polymer-based anti-HER2 antibody-drug conjugate employing cysteine bioconjugation through thioether linkage allows a high drug loading of dolastatin-derived payload with excellent pharmacokinetics and potent anti-tumor activity. Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19–23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013; 12(11 Suppl): Abstract nr C238