Kohn, K. W. Beyond DNA cross-linking: history and prospects of DNA-targeted cancer treatment — fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res.56, 5533–5546 (1996). CASPubMed Google Scholar
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med.3, 730–737 (1997). ArticleCASPubMed Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). ArticleCASPubMedPubMed Central Google Scholar
Singh, S. K. et al. Identification of human brain tumour-initiating cells. Nature432, 396–401 (2004). References 4 and 5 provide an early description of the purification of tumour-initiating cells that give rise to solid malignancies. ArticleCASPubMed Google Scholar
O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007). ArticleCASPubMed Google Scholar
Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature445, 111–115 (2007). ArticleCASPubMed Google Scholar
Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res.67, 1030–1037 (2007). ArticleCASPubMed Google Scholar
Yang, Z. F. et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell13, 153–166 (2008). ArticleCASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer3, 895–902 (2003). ArticleCAS Google Scholar
Clarke, M. F. et al. Cancer stem cells — perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res.66, 9339–9344 (2006b). ArticleCASPubMed Google Scholar
Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science317, 337 (2007). This paper described the observation that three mouse models of leukaemia and lymphoma are maintained by a dominant tumour cell population. The authors posit that xenotransplantation may select for tumour cells that are capable of surviving in a foreign environment. ArticleCASPubMed Google Scholar
Kennedy, J. A., Barabe, F., Poeppl, A. G., Wang, J. C. & Dick, J. E. Comment on “Tumor growth need not be driven by rare cancer stem cells”. Science318, 1722 (2007); author reply 318, 1722 (2007). ArticleCASPubMed Google Scholar
Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367, 645–648 (1994). The original report that showed the existence of stem cells in leukaemia. ArticleCASPubMed Google Scholar
Wang, J. C. et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood91, 2406–2414 (1998). ArticleCASPubMed Google Scholar
Miyamoto, T., Weissman, I. L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA97, 7521–7526 (2000). This study showed that purified populations of leukaemia stem cells contained the identical translocation as that found in their progeny, the blast cells, suggesting that the clonal progression to cancer could operate through the 'stem cell compartment'. ArticleCASPubMedPubMed Central Google Scholar
Hill, R. P. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res.66, 1891–1895; discussion 1890 (2006). ArticleCASPubMed Google Scholar
Haug, J. S. et al. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell2, 367–379 (2008). ArticleCASPubMed Google Scholar
Chen, G. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science323, 1722–1725 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zeppernick, F. et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin. Cancer Res.14, 123–129 (2008). ArticleCASPubMed Google Scholar
So, C. W. et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell3, 161–171 (2003). ArticleCASPubMed Google Scholar
Jaiswal, S. et al. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc. Natl Acad. Sci. USA100, 10002–10007 (2003). ArticleCASPubMedPubMed Central Google Scholar
Huntly, B. J. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell6, 587–596 (2004). ArticleCASPubMed Google Scholar
Liu, J. C., Deng, T., Lehal, R. S., Kim, J. & Zacksenhaus, E. Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res.67, 8671–8681 (2007a).
Cho, R. W. et al. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells26, 364–371 (2008). ArticleCASPubMed Google Scholar
Read, T. A. et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell15, 135–147 (2009). ArticleCASPubMedPubMed Central Google Scholar
Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature457, 608–611 (2009). ArticleCASPubMed Google Scholar
Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature457, 603–607 (2009). References 30 and 31 described lineage-tracing experiments using transgenic models that can bypass the limitations and experimental variability of the transplantation assay. ArticleCASPubMed Google Scholar
Ward, R. J. et al. Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res.69, 4682–4690 (2009). ArticleCASPubMed Google Scholar
The Cancer Genome Atlas Research network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455, 1061–1068 (2008).
Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science321, 1801–1806 (2008). ArticleCASPubMedPubMed Central Google Scholar
Warner, J. K., Wang, J. C., Hope, K. J., Jin, L. & Dick, J. E. Concepts of human leukemic development. Oncogene23, 7164–7177 (2004). ArticleCASPubMed Google Scholar
Hess, A. R., Margaryan, N. V., Seftor, E. A. & Hendrix, M. J. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Dev. Dyn.236, 3283–3296 (2007). ArticleCASPubMed Google Scholar
Beachy, P. A., Karhadkar, S. S. & Berman, D. M. Tissue repair and stem cell renewal in carcinogenesis. Nature432, 324–331 (2004). ArticleCASPubMed Google Scholar
Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423, 302–305 (2003). ArticleCASPubMed Google Scholar
Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423, 255–260 (2003). ArticleCASPubMed Google Scholar
Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature452, 650–653 (2008). This paper described different requirements for Wnt signalling in cutaneous tumour-initiating cells and normal stem cells. ArticleCASPubMed Google Scholar
Peacock, C. D. et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc. Natl Acad. Sci. USA104, 4048–4053 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhao, C. et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature458, 776–779 (2009). ArticleCASPubMedPubMed Central Google Scholar
Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature442, 818–822 (2006). ArticleCASPubMed Google Scholar
Akala, O. O. et al. Long-term haematopoietic reconstitution by Trp53−/− p16Ink4a−/−p19Arf−/− multipotent progenitors. Nature453, 228–232 (2008). ArticleCASPubMed Google Scholar
Guan, Y., Gerhard, B. & Hogge, D. E. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood101, 3142–3149 (2003). ArticleCASPubMed Google Scholar
Holyoake, T., Jiang, X., Eaves, C. & Eaves, A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood94, 2056–2064 (1999). ArticleCASPubMed Google Scholar
Yang, Z. J. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell14, 135–145 (2008). ArticleCASPubMedPubMed Central Google Scholar
He, X. C. et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nature Genet.39, 189–198 (2007). ArticleCASPubMed Google Scholar
Ashkenazi, R., Gentry, S. N. & Jackson, T. L. Pathways to tumorigenesis — modeling mutation acquisition in stem cells and their progeny. Neoplasia10, 1170–1182 (2008). ArticleCASPubMedPubMed Central Google Scholar
Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. & Kirchner, T. Opinion: migrating cancer stem cells — an integrated concept of malignant tumour progression. Nature Rev. Cancer5, 744–749 (2005). ArticleCAS Google Scholar
Balic, M. et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res.12, 5615–5621 (2006). ArticleCASPubMed Google Scholar
Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell1, 313–323 (2007). ArticleCASPubMed Google Scholar
Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer2, 442–454 (2002). ArticleCAS Google Scholar
Eger, A. et al. β-Catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene23, 2672–2680 (2004). ArticleCASPubMed Google Scholar
Timmerman, L. A. et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev.18, 99–115 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell131, 1109–1123 (2007). ArticleCASPubMed Google Scholar
Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature425, 836–841 (2003). ArticleCASPubMed Google Scholar
Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425, 841–846 (2003). ArticleCASPubMed Google Scholar
Li, L. & Neaves, W. B. Normal stem cells and cancer stem cells: the niche matters. Cancer Res.66, 4553–4557 (2006). ArticleCASPubMed Google Scholar
Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell7, 17–23 (2005). CASPubMedPubMed Central Google Scholar
Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature435, 969–973 (2005). ArticleCASPubMedPubMed Central Google Scholar
Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell11, 69–82 (2007). ArticleCASPubMed Google Scholar
Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev.22, 436–448 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res.66, 7843–7848 (2006). ArticleCASPubMed Google Scholar
Clarke, M. F. & Becker, M. W. Stem cells: the real culprits in cancer? Sci. Am.295, 52–59 (2006). ArticlePubMed Google Scholar
Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumors. Oncogene23, 7267–7273 (2004). ArticleCASPubMed Google Scholar
Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I. & Clarke, M. F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev.14, 43–47 (2004). ArticleCASPubMed Google Scholar
van Rhenen, A. et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin. Cancer Res.11, 6520–6527 (2005). ArticleCASPubMed Google Scholar
Shipitsin, M. et al. Molecular definition of breast tumor heterogeneity. Cancer Cell11, 259–273 (2007). ArticleCASPubMed Google Scholar
Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst.100, 672–679 (2008). ArticleCASPubMed Google Scholar
Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med.7, 1028–1034 (2001). ArticleCASPubMed Google Scholar
Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature431, 997–1002 (2004). ArticleCASPubMed Google Scholar
Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444, 756–760 (2006). ArticleCASPubMed Google Scholar
Potten, C. S., Wilson, J. W. & Booth, C. Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells15, 82–93 (1997). ArticleCASPubMed Google Scholar
Era, T. Bcr-Abl is a “molecular switch” for the decision for growth and differentiation in hematopoietic stem cells. Int. J. Hematol.76, 35–43 (2002). ArticleCASPubMed Google Scholar
Bedi, A. et al. BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood81, 2898–2902 (1993). ArticleCASPubMed Google Scholar
Graham, S. M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood99, 319–325 (2002). ArticleCASPubMed Google Scholar
Hughes, T. P. et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med.349, 1423–1432 (2003). ArticleCASPubMed Google Scholar
Bhatia, R. et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood101, 4701–4707 (2003). ArticleCASPubMed Google Scholar
Hamilton, A. et al. BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia20, 1035–1039 (2006). ArticleCASPubMed Google Scholar
Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature453, 110–114 (2008). ArticleCASPubMed Google Scholar
Huff, C. A., Matsui, W., Smith, B. D. & Jones, R. J. The paradox of response and survival in cancer therapeutics. Blood107, 431–434 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wicha, M. S., Liu, S. & Dontu, G. Cancer stem cells: an old idea — a paradigm shift. Cancer Res.66, 1883–1890; discussion 1895–1986 (2006). ArticleCASPubMed Google Scholar
Korkaya, H., Paulson, A., Iovino, F. & Wicha, M. S. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene27, 6120–6130 (2008). ArticleCASPubMedPubMed Central Google Scholar
Magnifico, A. et al. Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin. Cancer Res.15, 2010–2021 (2009). ArticleCASPubMed Google Scholar
Nahta, R., Yu, D., Hung., M. C., Hortobagyi, G. N. & Esteva, F. J. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clin. Pract. Oncol.3, 269–280 (2006). ArticleCAS Google Scholar
Jordan, C. T. Cancer stem cells: controversial or just misunderstood? Cell Stem Cell4, 203–205 (2009). An excellent review discussing the issues and misconceptions in the cancer stem cell field. ArticleCASPubMedPubMed Central Google Scholar
Hogan, B. L. et al. Branching morphogenesis of the lung: new models for a classical problem. Cold Spring Harb. Symp. Quant. Biol.62, 249–256 (1997). ArticleCASPubMed Google Scholar
Bitgood, M. J. & McMahon, A. P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol.172, 126–138 (1995). ArticleCASPubMed Google Scholar
Kawano, Y. & Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci.116, 2627–2634 (2003). ArticleCASPubMed Google Scholar
Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nature Genet.36, 417–422 (2004). ArticleCASPubMed Google Scholar
Lepourcelet, M. et al. Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell5, 91–102 (2004). ArticleCASPubMed Google Scholar
Emami, K. H. et al. A small molecule inhibitor of β-catenin/CREB-binding protein transcription [corrected]. Proc. Natl Acad. Sci. USA101, 12682–12687 (2004). ArticleCASPubMedPubMed Central Google Scholar
You, L. et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res.64, 5385–5389 (2004). ArticleCASPubMed Google Scholar
You, L. et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene23, 6170–6174 (2004). ArticleCASPubMed Google Scholar
Sanchez, P. et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Natl Acad. Sci. USA101, 12561–12566 (2004). ArticleCASPubMedPubMed Central Google Scholar
Romer, J. T. et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/− p53−/− mice. Cancer Cell6, 229–240 (2004). ArticleCASPubMed Google Scholar
Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature425, 846–851 (2003). ArticleCASPubMed Google Scholar
Watkins, D. N. et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature422, 313–317 (2003). ArticleCASPubMed Google Scholar
Athar, M. et al. Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res.64, 7545–7552 (2004). ArticleCASPubMed Google Scholar
Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell9, 391–403 (2006). ArticleCASPubMed Google Scholar
Sasai, K. et al. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res.66, 4215–4222 (2006). ArticleCASPubMed Google Scholar
Fan, L. et al. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology145, 3961–3970 (2004). ArticleCASPubMed Google Scholar
Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature455, 406–410 (2008). ArticleCASPubMed Google Scholar
Weijzen, S. et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nature Med.8, 979–986 (2002). ArticleCASPubMed Google Scholar
Bocchetta, M., Miele, L., Pass, H. I. & Carbone, M. Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene22, 81–89 (2003). ArticleCASPubMed Google Scholar
Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science306, 269–271 (2004). ArticleCASPubMed Google Scholar
van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature435, 959–963 (2005). ArticleCASPubMed Google Scholar
Fan, X. et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res.66, 7445–7452 (2006). ArticleCASPubMed Google Scholar
Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature444, 1083–1087 (2006). ArticleCASPubMed Google Scholar
Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature444, 1032–1037 (2006). ArticleCASPubMed Google Scholar
Li, K. et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J. Biol. Chem.283, 8046–8054 (2008). ArticleCASPubMed Google Scholar
Guzman, M. L. et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl Acad. Sci. USA 99, 16220–16225 (2002). ArticleCASPubMedPubMed Central Google Scholar
Diamandis, P. et al. Chemical genetics reveals a complex functional ground state of neural stem cells. Nature Chem. Biol.3, 268–273 (2007). ArticleCAS Google Scholar
Ayyanan, A. et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc. Natl Acad. Sci. USA103, 3799–3804 (2006). ArticleCASPubMedPubMed Central Google Scholar
Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Med.13, 1203–1210 (2007). ArticleCASPubMed Google Scholar
Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature444, 761–765 (2006). References 118 and 127 describe differentiation as a strategy to combat tumour-initiating cells. ArticleCASPubMed Google Scholar
Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev.17, 3029–3035 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nature Rev. Cancer6, 846–856 (2006). ArticleCAS Google Scholar
Lee, J. et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell13, 69–80 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev.21, 525–530 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gonzalez, M. E. et al. Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1. Oncogene28, 843–853 (2009). ArticleCASPubMed Google Scholar
Todaro, M. et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell1, 389–402 (2007). ArticleCASPubMed Google Scholar
Zhou, J. et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc. Natl Acad. Sci. USA104, 16158–16163 (2007). ArticleCASPubMedPubMed Central Google Scholar
Viale, A. et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature457, 51–56 (2009). ArticleCASPubMed Google Scholar
Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature408, 433–439 (2000). ArticleCASPubMed Google Scholar
Godar, S. et al. Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell134, 62–73 (2008). ArticleCASPubMedPubMed Central Google Scholar
Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood89, 3104–3112 (1997). ArticleCASPubMed Google Scholar
Blair, A. & Sutherland, H. J. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp. Hematol.28, 660–671 (2000). ArticleCASPubMed Google Scholar
Jordan, C. T. et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia14, 1777–1784 (2000). ArticleCASPubMed Google Scholar
Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nature Biotech.23, 1147–1157 (2005). ArticleCAS Google Scholar
Kawasaki, B. T., Mistree, T., Hurt, E. M., Kalathur, M. & Farrar, W. L. Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem. Biophys. Res. Commun.364, 778–782 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wu, A. M. & Senter, P. D. Arming antibodies: prospects and challenges for immunoconjugates. Nature Biotech.23, 1137–1146 (2005). ArticleCAS Google Scholar
Burges, A. et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clin. Cancer Res.13, 3899–3905 (2007). ArticleCASPubMed Google Scholar
Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C. & Gottesman, M. M. Targeting multidrug resistance in cancer. Nature Rev. Drug Discov.5, 219–234 (2006). ArticleCAS Google Scholar
Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotech.25, 1315–1321 (2007). ArticleCAS Google Scholar
Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F. & Dick, J. E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Med.12, 1167–1174 (2006). ArticleCASPubMed Google Scholar
Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005). ArticleCASPubMed Google Scholar
Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol.425, 479–494 (2000). ArticleCASPubMed Google Scholar
Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron35, 865–875 (2002). ArticlePubMed Google Scholar
Louissaint, A. Jr, Rao, S., Leventhal, C. & Goldman, S. A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron34, 945–960 (2002). ArticleCASPubMed Google Scholar
Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature441, 475–482 (2006). ArticleCASPubMed Google Scholar
Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature441, 518–522 (2006). ArticleCASPubMed Google Scholar
Molckovsky, A. & Siu, L. L. First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American Society of Clinical Oncology meeting. J. Hematol. Oncol.1, 20 (2008). ArticlePubMedPubMed Central Google Scholar
Cullion, K. et al. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood24, 6172–6181 (2009). ArticleCAS Google Scholar
Mimeault, M. et al. Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int. J. Cancer118, 1022–1031 (2006). ArticleCASPubMed Google Scholar
Riobo, N. A., Lu, K., Ai, X., Haines, G. M. & Emerson, C. P. Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc. Natl Acad. Sci. USA103, 4505–4510 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bleau, A. M. et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell4, 226–235 (2009). ArticleCASPubMedPubMed Central Google Scholar
Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science324, 1457–1461 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jimeno, A. et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol. Cancer Ther.8, 310–314 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kondo, T., Setoguchi, T. & Taga, T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl Acad. Sci. USA101, 781–786 (2004). ArticleCASPubMedPubMed Central Google Scholar
Fillmore, C. M. & Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res.10, R25 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Charafe-Jauffret, E. et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res.69, 1302–1313 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hirschmann-Jax, C. et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA101, 14228–14233 (2004). ArticleCASPubMedPubMed Central Google Scholar
Patrawala, L. et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res.65, 6207–6219 (2005). ArticleCASPubMed Google Scholar
Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res.65, 5506–5511 (2005). ArticleCASPubMed Google Scholar
Pollard, S. M. et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell4, 568–580 (2009). ArticleCASPubMed Google Scholar
Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell1, 555–567 (2007). ArticleCASPubMedPubMed Central Google Scholar
Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63, 5821–5828 (2003). CASPubMed Google Scholar
Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255, 1707–1710 (1992). ArticleCASPubMed Google Scholar
Ince, T. A. et al. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell12, 160–170 (2007). ArticleCASPubMed Google Scholar
Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature459, 262–265 (2009). ArticleCASPubMed Google Scholar
Underhill, G. H. & Bhatia, S. N. High-throughput analysis of signals regulating stem cell fate and function. Curr. Opin. Chem. Biol.11, 357–366 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol.2, 172–180 (2001). ArticleCAS Google Scholar
Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature442, 823–826 (2006). ArticleCASPubMed Google Scholar
Ezashi, T., Das, P. & Roberts, R. M. Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl Acad. Sci. USA102, 4783–4788 (2005). ArticleCASPubMedPubMed Central Google Scholar
Olivotto, M. & Dello Sbarba, P. Environmental restrictions within tumor ecosystems select for a convergent, hypoxia-resistant phenotype of cancer stem cells. Cell Cycle7, 176–187 (2008). ArticleCASPubMed Google Scholar
Desbordes, S. C. et al. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell2, 602–612 (2008). ArticleCASPubMedPubMed Central Google Scholar
Falk, A., Karlsson, T. E., Kurdija, S., Frisen, J. & Zupicich, J. High-throughput identification of genes promoting neuron formation and lineage choice in mouse embryonic stem cells. Stem Cells25, 1539–1545 (2007). ArticleCASPubMed Google Scholar
Saxe, J. P. et al. A phenotypic small-molecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. Chem. Biol.14, 1019–1030 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bushway, P. J. & Mercola, M. High-throughput screening for modulators of stem cell differentiation. Methods Enzymol.414, 300–316 (2006). ArticleCASPubMed Google Scholar
Ungrin, M. D., Joshi, C., Nica, A., Bauwens, C. & Zandstra, P. W. Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS ONE3, e1565 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Kim, K. H. et al. Three-dimensional tissue cytometer based on high-speed multiphoton microscopy. Cytometry A71, 991–1002 (2007). ArticlePubMed Google Scholar
Mazurier, F., Gan, O. I., McKenzie, J. L., Doedens, M. & Dick, J. E. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood103, 545–552 (2004). ArticleCASPubMed Google Scholar
Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell138, 645–659 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kern, S. E. & Shibata, D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Res.67, 8985–8988 (2007). ArticleCASPubMed Google Scholar
Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.64, 7011–7021 (2004). ArticleCASPubMed Google Scholar
McKenzie, J. L., Gan, O. I., Doedens, M. & Dick, J. E. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood106, 1259–1261 (2005). ArticleCASPubMed Google Scholar
Shimosato, Y. et al. Transplantation of human tumors in nude mice. J. Natl Cancer Inst.56, 1251–1260 (1976). ArticleCASPubMed Google Scholar
Anderson, S. A. et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood105, 420–425 (2005). ArticleCASPubMed Google Scholar
Xie, Y. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature457, 97–101 (2009). ArticleCASPubMed Google Scholar
Abraham, B. K. et al. Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin. Cancer Res.11, 1154–1159 (2005). CASPubMed Google Scholar
Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med.356, 217–226 (2007). ArticleCASPubMed Google Scholar
Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature450, 1235–1239 (2007). ArticleCASPubMedPubMed Central Google Scholar
Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science297, 63–64 (2002). ArticleCASPubMed Google Scholar
Tabs, S. & Avci, O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur. J. Dermatol.14, 96–102 (2004). PubMed Google Scholar
Marangoni, E. et al. CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts. Br. J. Cancer100, 918–922 (2009). ArticleCASPubMedPubMed Central Google Scholar
Beier, D. et al. CD133+ and CD133− glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res.67, 4010–4015 (2007). ArticleCASPubMed Google Scholar
Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science316, 600–604 (2007). ArticleCASPubMed Google Scholar
Sausville, E. A. & Burger, A. M. Contributions of human tumor xenografts to anticancer drug development. Cancer Res.66, 3351–3354, (2006). ArticleCASPubMed Google Scholar