Nicotinamide Prevents NAD+ Depletion and Protects Neurons Against Excitotoxicity and Cerebral Ischemia: NAD+ Consumption by SIRT1 may Endanger Energetically Compromised Neurons (original) (raw)
References
Alcendor, R. R., Gao, S., Zhai, P., Zablocki, D., Holle, E., Yu, X., et al. (2007). Sirt1 regulates aging and resistance to oxidative stress in the heart. Circulation Research,100, 1512–1521. doi:10.1161/01.RES.0000267723.65696.4a. ArticlePubMedCAS Google Scholar
Anderson, R. M., Latorre-esteves, M., Neves, A. R., Lavu, S., Medvedik, O., Taylor, C., et al. (2003). Yeast life-span extension by calorie restriction is independent of NAD+ fluctuation. Science,302, 2124–2126. doi:10.1126/science.1088697. ArticlePubMedCAS Google Scholar
Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., et al. (1995). Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron,15, 961–973. doi:10.1016/0896-6273(95)90186-8. ArticlePubMedCAS Google Scholar
Bieganowski, P., & Brenner, C. (2004). Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-handler independent route to NAD+ in fungi and humans. Cell,117, 495–502. doi:10.1016/S0092-8674(04)00416-7. ArticlePubMedCAS Google Scholar
Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M., & Sinclair, D. A. (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. The Journal of Biological Chemistry,277, 45099–45107. doi:10.1074/jbc.M205670200. ArticlePubMedCAS Google Scholar
Boulares, A. H., Yakovlev, A. G., Ivanova, V., Stoica, B. A., Wang, G., Iyer, S., et al. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis: Caspase 3-resistant parp mutant increases rates of apoptosis in transfected cells. The Journal of Biological Chemistry,274, 22932–22940. doi:10.1074/jbc.274.33.22932. ArticlePubMedCAS Google Scholar
Brennan, A. M., Connor, J. A., & Shuttleworth, C. W. (2006). NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function. Journal of Cerebral Blood Flow and Metabolism,26, 1389–1406. doi:10.1038/sj.jcbfm.9600292. ArticlePubMedCAS Google Scholar
Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science,303, 2011–2015. doi:10.1126/science.1094637. ArticlePubMedCAS Google Scholar
Butler, R., & Bates, G. P. (2006). Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nature Reviews. Neuroscience,7, 784–796. doi:10.1038/nrn1989. ArticlePubMedCAS Google Scholar
Cai, A. L., Zipfel, G. J., & Sheline, C. T. (2006). Zinc neurotoxicity is dependent on intracellular NAD+ levels and the sirtuin pathway. The European Journal of Neuroscience,24, 2169–2176. doi:10.1111/j.1460-9568.2006.05110.x. ArticlePubMed Google Scholar
Clement, M. V., Hirpara, J. L., Chawdhury, S. H., & Pervaiz, S. (1998). Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood,92, 996–1002. PubMedCAS Google Scholar
Cohen, H. Y., Miller, C., Bitterman, K. J., Wal, N. R., Hekking, B., Kessler, B., et al. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science,305, 390–392. doi:10.1126/science.1099196. ArticlePubMedCAS Google Scholar
Du, L., Zhang, X., Han, Y. Y., Burke, N. A., Kochanek, P. M., Watkins, S. C., et al. (2003). Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. The Journal of Biological Chemistry,278, 18426–18433. doi:10.1074/jbc.M301295200. ArticlePubMedCAS Google Scholar
Eng, J., Lynch, R. M., & Balaban, R. S. (1989). Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated myocytes. Biophysical Journal,55, 621–630. doi:10.1016/S0006-3495(89)82859-0. ArticlePubMedCAS Google Scholar
Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., et al. (2005). Sir2 blocks extreme life-span extension. Cell,18, 655–667. doi:10.1016/j.cell.2005.08.042. ArticleCAS Google Scholar
Gao, X., Xu, Y. X., Divine, G., Janakiraman, N., Chapman, R. A., & Gautam, S. C. (2002). Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes. The Journal of Nutrition,132, 2076–2081. PubMedCAS Google Scholar
Gill, R., Andine, P., Hillerd, L., Persson, L., & Hagberg, H. (1992). The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism,12, 371–379. PubMedCAS Google Scholar
Green, K. N., Steffan, J. S., Martinez-Coria, H., Sun, X., Schreiber, S. S., Thompson, L. M., et al. (2008). Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. Journal of Neuroscience,28, 11500–11510. doi:10.1523/JNEUROSCI.3203-08.2008. ArticlePubMedCAS Google Scholar
Hata, R., Maeda, K., Hermann, D., Mies, G., & Hossmann, K. A. (2000). Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion. Journal of Cerebral Blood Flow and Metabolism,20, 306–315. doi:10.1097/00004647-200002000-00012. PubMedCAS Google Scholar
Herceg, Z., & Wang, Z. Q. (1999). Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Molecular and Cellular Biology,19, 5124–5133. PubMedCAS Google Scholar
Hinz, M., Katsilambros, N., Maier, V., Schatz, H., & Pfeiffer, E. F. (1973). Significance of streptozotocin induced nicotinamide-adenine-dinucleotide (NAD+) degradation in mouse pancreatic islets. FEBS Letters,30, 225–230. doi:10.1016/0014-5793(73)80656-8. ArticlePubMedCAS Google Scholar
Hossmann, K. A. (2003). Glutamate hypothesis of stroke. Fortschritte der Neurologie, Psychiatrie, und ihrer Grenzgebiete,71(Suppl 1), S10. doi:10.1055/s-2003-40500. Google Scholar
Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., & Wood, J. G. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature,425, 191–196. doi:10.1038/nature01960. ArticlePubMedCAS Google Scholar
Hyun, D. H., Hunt, N. D., Emerson, S. S., Hernandez, J. O., Mattson, M. P., & de Cabo, R. (2007). Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria. Journal of Neurochemistry,100, 1364–1374. doi:10.1111/j.1471-4159.2006.04411.x. ArticlePubMedCAS Google Scholar
Imai, S., Armstrong, C. M., Kaeberlein, M., & Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD+-dependent histone deacetylase. Nature,403, 795–800. doi:10.1038/35001622. ArticlePubMedCAS Google Scholar
Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., & Poirier, G. G. (1993). Specific cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Research,53, 3976–3985. PubMedCAS Google Scholar
Klaidman, L., Morales, M., Kem, S., Yang, J., Chang, M. L., & Adams, J. D. (2003). Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function. Pharmacology,69, 150–157. doi:10.1159/000072668. ArticlePubMedCAS Google Scholar
Kobayashi, Y., Furukawa-Hibi, Y., Chen, C., Horio, Y., Isobe, K., Ikeda, K., et al. (2005). SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. International Journal of Molecular Medicine,16, 237–243. PubMedCAS Google Scholar
Kolthur-Seetharam, U., Dantzer, F., McBurney, M. W., de Murcia, G., & Sassone-Corsi, P. (2006). Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle,5, 873–877. PubMedCAS Google Scholar
Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., et al. (2000). The silencing protein SIR2 and its homologs are NAD+-dependent protein deacetylases. Proceedings of the National Academy of Sciences of the United States of America,97, 5807–5811. doi:10.1073/pnas.110148297. ArticlePubMedCAS Google Scholar
Langley, B., Gensert, J. M., Beal, M. F., & Ratan, R. R. (2005). Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Current Drug Targets. CNS Neurological Disorders,4, 41–50. ArticlePubMedCAS Google Scholar
Lee, J. B., Grabb, M. C., Zipfel, G. J., & Choi, D. W. (2000). Brain tissue responses to ischemia. The Journal of Clinical Investigation,106, 723–731. doi:10.1172/JCI11003. ArticlePubMedCAS Google Scholar
Lisa, F. D., Menabo, R., Canton, M., Baria, M., & Bernardi, P. (2001). Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytesin postischemic reperfusion of the heart. The Journal of Biological Chemistry,276, 2571–2575. doi:10.1074/jbc.M006825200. ArticlePubMed Google Scholar
Liu, D., Chan, S. L., de Souza-Pinto, N. C., Slevin, J. R., Wersto, R. P., Zhan, M., et al. (2006). Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Medicine,8, 389–414. doi:10.1385/NMM:8:3:389. ArticlePubMedCAS Google Scholar
Liu, D., Lu, C., Wan, R., Auyeung, W. W., & Mattson, M. P. (2002). Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome C. Journal of Cerebral Blood Flow and Metabolism,22, 431–433. doi:10.1097/00004647-200204000-00007. PubMedCAS Google Scholar
Liu, D., Pitta, M., & Mattson, M. (2008). Preventing NAD+ depletion protects neurons against excitotoxicity: Bioenergetic effects of mild mitochondrial uncoupling, caloric restriction. Annals of the New York Academy of Sciences,1147, 275–282. ArticlePubMedCAS Google Scholar
Liu, D., Smith, C. L., Barone, F. C., Ellison, J. A., Lysko, P. G., Li, K., et al. (1999). Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Molecular Brain Research,68, 29–41. doi:10.1016/S0169-328X(99)00063-7. ArticlePubMedCAS Google Scholar
Matthews, R. T., Ferrante, R. J., Klivenyi, P., Yang, L., Klein, A. M., Mueller, G., et al. (1999). Creatine and cyclocreatine attenuate MPTP neurotoxicity. Experimental Neurology,157, 142–149. doi:10.1006/exnr.1999.7049. ArticlePubMedCAS Google Scholar
Matthews, R. T., Yang, L., Jenkins, B. G., Ferrante, R. J., Rosen, B. R., Kaddurah-Daouk, R., et al. (1998). Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. Journal of Neuroscience,18, 156–163. PubMedCAS Google Scholar
Mattson, M. P. (2003). Excitotoxic and excitoprotective mechanisms: Abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Medicine,3, 65–94. doi:10.1385/NMM:3:2:65. ArticlePubMedCAS Google Scholar
Mattson, M. P., Barger, S. W., Begley, J. G., & Mark, R. J. (1995). Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods in Cell Biology,46, 187–216. doi:10.1016/S0091-679X(08)61930-5. ArticlePubMedCAS Google Scholar
Mattson, M. P., & Liu, D. (2002). Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Medicine,2, 215–231. doi:10.1385/NMM:2:2:215. ArticlePubMedCAS Google Scholar
McBurney, M. W., Yang, X., Jardine, K., Hixon, M., Boekelheide, K., Webb, J. R., et al. (2003). The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Molecular and Cellular Biology,23, 38–54. doi:10.1128/MCB.23.1.38-54.2003. ArticlePubMedCAS Google Scholar
Pieper, A. A., Blackshaw, S., Clements, E. E., Daniel, J., Brat, D. J., Krug, D. K., et al. (2000). Poly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotransmission. Proceedings of the National Academy of Sciences of the United States of America,97, 1845–1850. doi:10.1073/pnas.97.4.1845. ArticlePubMedCAS Google Scholar
Pillai, J. B., Isbatan, A., Imai, S., & Gupta, M. P. (2005). Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced sir2α deacetylase activity. The Journal of Biological Chemistry,280, 43121–43130. doi:10.1074/jbc.M506162200. ArticlePubMedCAS Google Scholar
Raval, A. P., Dave, K. R., & Perez-Pinzon, M. A. (2006). Resveratrol mimics ischemic preconditioning in the brain. Journal of Cerebral Blood Flow and Metabolism,26, 1141–1147. PubMedCAS Google Scholar
Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., & Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature,434, 113–118. doi:10.1038/nature03354. ArticlePubMedCAS Google Scholar
Sadanaga-Akiyoshi, F., Yao, H., Tanuma, S., Nakahara, T., Hong, J. S., Ibayashi, S., et al. (2003). Nicotinamide attenuates focal ischemic brain injury in rats: With special reference to changes in nicotinamide and NAD+ levels in ischemic core and penumbra. Neurochemical Research,28, 1227–1234. doi:10.1023/A:1024236614015. ArticlePubMedCAS Google Scholar
Sauve, A. A., Moir, R. M., Schramm, V. L., & Willis, I. M. (2005). Chemical activation of sir2-dependent silencing by relief of nicotinamide inhibition. Molecular Cell,17, 595–601. doi:10.1016/j.molcel.2004.12.032. ArticlePubMedCAS Google Scholar
Schmidt, M. T., Smith, B. C., Jackson, M. D., & Denu, J. M. (2004). Coenzyme specificity of Sir2 protein deacetylases: Implications for physiological regulation. The Journal of Biological Chemistry,279, 40122–40129. doi:10.1074/jbc.M407484200. ArticlePubMedCAS Google Scholar
Schulz, J. B., Henshaw, D. R., Matthews, R. T., & Beal, M. F. (1995). Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity. Experimental Neurology,132, 279–283. doi:10.1016/0014-4886(95)90033-0. ArticlePubMedCAS Google Scholar
Sheline, C. T., Behrens, M. M., & Choi, D. W. (2000). Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. The Journal of Neuroscience,20, 3139–3146. PubMedCAS Google Scholar
Soane, L., Kahraman, S., Kristian, T., & Fiskum, G. (2007). Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. Journal of Neuroscience Research,85, 3407–3415. doi:10.1002/jnr.21498. ArticlePubMedCAS Google Scholar
Tanner, K. G., Landry, J., Sternglanz, R., & Denu, J. M. (2000). Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-_O-_acetyl-ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America,97, 14178–14182. doi:10.1073/pnas.250422697. ArticlePubMedCAS Google Scholar
Tarnopolsky, M. A., & Beal, M. F. (2001). Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Annals of Neurology,49, 561–574. doi:10.1002/ana.1028. ArticlePubMedCAS Google Scholar
Winfree, C. J., Baker, C. J., Connoly, E. S., Fiore, A. J., & Solomon, R. A. (1996). Mild hypothermia reduces penumbral glutamate levels in the rat permanent focal cerebral ischemia model. Neurosurgery,38, 1216–1222. doi:10.1097/00006123-199606000-00034. ArticlePubMedCAS Google Scholar
Woodley, C. L., & Gupta, N. K. (1971). New enzyme cycling method for determination of oxidized and reduced nicotinamide adenine dinucleotide. Analytical Biochemistry,43, 341–348. ArticlePubMedCAS Google Scholar
Yang, J., Klaidman, L. K., Chang, M. L., Kem, S., Sugawara, T., Chan, P., et al. (2002). Nicotinamide therapy protects against both necrosis and apoptosis in a stroke model. Pharmacology, Biochemistry, and Behavior,73, 901–910. doi:10.1016/S0091-3057(02)00939-5. ArticlePubMedCAS Google Scholar
Yang, T., & Sauve, A. A. (2006). NAD+ metabolism and sirtuins: Metabolic regulation of protein deacetylation in stress and toxicity. The AAPS Journal,8, 632–643. doi:10.1208/aapsj080472. Article Google Scholar