Histone deacetylase inhibitors as therapeutics for polyglutamine disorders (original) (raw)
Bates, G. P., Harper, P. S. & Jones, A. L. (eds) Huntington's Disease (Oxford Univ. Press, Oxford, 2002). Google Scholar
Cummings, C. J. & Zoghbi, H. Y. Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet.9, 909–916 (2000). CASPubMed Google Scholar
Paulson, H. L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron19, 333–344 (1997). CASPubMed Google Scholar
Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell90, 537–548 (1997). CASPubMed Google Scholar
DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science277, 1990–1993 (1997). CASPubMed Google Scholar
Wacker, J. L., Zareie, M. H., Fong, H., Sarikaya, M. & Muchowski, P. J. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nature Struct. Mol. Biol.11, 1215–1222 (2004). CAS Google Scholar
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature431, 805–810 (2004). CASPubMed Google Scholar
Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl Acad. Sci. USA96, 11404–11409 (1999). CASPubMedPubMed Central Google Scholar
Perez, M. K. et al. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell Biol.143, 1457–1470 (1998). CASPubMedPubMed Central Google Scholar
Cha, J. -H. J. et al. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. Proc. Natl Acad. Sci. USA95, 6480–6485 (1998). The first study to show abnormal transcriptional regulation in HD. CASPubMedPubMed Central Google Scholar
Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene363, 15–23 (2005). CASPubMed Google Scholar
Norton, V., Marvin, K., Yau, P. & Bradbury, E. Nucleosome linking number change controlled by acetylation of histones H3 and H4. J. Biol. Chem.265, 19848–19852 (1990). CASPubMed Google Scholar
Lee, D. Y., Hayes, J. J., Pruss, D. & Wolffe, A. P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell72, 73–84 (1993). CASPubMed Google Scholar
Hebbes, T. R., Thorne, A. W., Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J.7, 1395–1402 (1988). CASPubMedPubMed Central Google Scholar
Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA93, 14503–14508 (1996). CASPubMedPubMed Central Google Scholar
Zhu, W. G., Lakshmanan, R. R., Beal, M. D. & Otterson, G. A. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res.61, 1327–1333 (2001). CASPubMed Google Scholar
Marks, P. A., Richon, V. M. & Rifkind, R. A. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl Cancer Inst.92, 1210–1216 (2000). CASPubMed Google Scholar
Glaser, K. B. et al. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther.2, 151–163 (2003). CASPubMed Google Scholar
Mariadason, J. M., Corner, G. A. & Augenlicht, L. H. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res.60, 4561–4572 (2000). CASPubMed Google Scholar
Chambers, A. E. et al. Histone acetylation-mediated regulation of genes in leukaemic cells. Eur. J. Cancer39, 1165–1175 (2003). CASPubMed Google Scholar
Cress, W. D. & Seto, E. Histone deacetylases, transcriptional control, and cancer. J. Cell. Physiol.184, 1–16 (2000). CASPubMed Google Scholar
Timmermann, S., Lehrmann, H., Polesskaya, A. & Harel-Bellan, A. Histone acetylation and disease. Cell. Mol. Life. Sci.58, 728–736 (2001). CASPubMed Google Scholar
Hughes, R. E. Polyglutamine disease: acetyltransferases awry. Curr. Biol.12, R141–R143 (2002). CASPubMed Google Scholar
Yang, X. -J. & Gregoire, S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell. Biol.25, 2873–2884 (2005). CASPubMedPubMed Central Google Scholar
de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. & van Kuilenburg, A. B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J.370, 737–749 (2003). A comprehensive review of the different classes of HDAC. CASPubMedPubMed Central Google Scholar
Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science272, 408–411 (1996). CASPubMed Google Scholar
Finnin, M. S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature401, 188–193 (1999). CASPubMed Google Scholar
Longworth, M. S. & Laimins, L. A. Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src. Oncogene25, 4495–4500 (2006). CASPubMed Google Scholar
Ayer, D. E. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol.9, 193–198 (1999). CASPubMed Google Scholar
Carmen, A. A., Rundlett, S. E. & Grunstein, M. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem.271, 15837–15844 (1996). CASPubMed Google Scholar
Huang, E. Y. et al. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev.14, 45–54 (2000). CASPubMedPubMed Central Google Scholar
Kao, H. Y., Downes, M., Ordentlich, P. & Evans, R. M. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev14, 55–66 (2000). CASPubMedPubMed Central Google Scholar
Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell9, 45–57 (2002). An important study showing HDAC3-dependent activity of class II HDACs. CASPubMed Google Scholar
Seigneurin-Berny, D. et al. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol. Cell. Biol.21, 8035–8044 (2001). CASPubMedPubMed Central Google Scholar
Zhang, Y. et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J.22, 1168–1179 (2003). CASPubMedPubMed Central Google Scholar
Fischer, D. D. et al. Isolation and characterization of a novel class II histone deacetylase, HDAC10. J. Biol. Chem.277, 6656–6666 (2002). CASPubMed Google Scholar
Guardiola, A. R. & Yao, T. P. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J. Biol. Chem.277, 3350–3356 (2002). CASPubMed Google Scholar
Kao, H. Y., Lee, C. H., Komarov, A., Han, C. C. & Evans, R. M. Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J. Biol. Chem.277, 187–193 (2002). CASPubMed Google Scholar
Tong, J. J., Liu, J., Bertos, N. R. & Yang, X. J. Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res.30, 1114–1123 (2002). CASPubMedPubMed Central Google Scholar
Frye, R. A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun.273, 793–798 (2000). CASPubMed Google Scholar
Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev.13, 2570–2580 (1999). CASPubMedPubMed Central Google Scholar
Denu, J. M. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases. Trends Biochem. Sci.28, 41–48 (2003). CASPubMed Google Scholar
Sauve, A. A. et al. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry40, 15456–15463 (2001). CASPubMed Google Scholar
Sauve, A. A. & Schramm, V. L. SIR2: the biochemical mechanism of NAD+-dependent protein deacetylation and ADP-ribosyl enzyme intermediates. Curr. Med. Chem.11, 807–826 (2004). CASPubMed Google Scholar
Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. & Sinclair, D. A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem.277, 45099–45107 (2002). CASPubMed Google Scholar
Anekonda, T. S. & Reddy, P. H. Neuronal protection by sirtuins in Alzheimer's disease. J. Neurochem.96, 305–313 (2006). CASPubMed Google Scholar
Gao, L., Cueto, M. A., Asselbergs, F. & Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem.277, 25748–25755 (2002). CASPubMed Google Scholar
Bertos, N. R., Wang, A. H. & Yang, X. J. Class II histone deacetylases: structure, function, and regulation. Biochem. Cell Biol.79, 243–252 (2001). CASPubMed Google Scholar
Sengupta, N. & Seto, E. Regulation of histone deacetylase activities. J. Cell. Biochem.93, 57–67 (2004). CASPubMed Google Scholar
McKinsey, T. A., Zhang, C. L. & Olson, E. N. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell. Biol.21, 6312–6321 (2001). CASPubMedPubMed Central Google Scholar
Yang, W. M., Tsai, S. C., Wen, Y. D., Fejer, G. & Seto, E. Functional domains of histone deacetylase-3. J. Biol. Chem.277, 9447–9454 (2002). CASPubMed Google Scholar
Lu, J., McKinsey, T. A., Nicol, R. L. & Olson, E. N. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl Acad. Sci. USA97, 4070–4075 (2000). CASPubMedPubMed Central Google Scholar
Miska, E. A. et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J.18, 5099–5107 (1999). CASPubMedPubMed Central Google Scholar
Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M. E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science286, 785–790 (1999). CASPubMed Google Scholar
Gaudilliere, B., Shi, Y. & Bonni, A. RNA Interference reveals a requirement for myocyte enhancer factor 2A in activity-dependent neuronal survival. J. Biol. Chem.277, 46442–46446 (2002). CASPubMed Google Scholar
Miska, E. A. et al. Differential localization of HDAC4 orchestrates muscle differentiation. Nucleic Acids Res.29, 3439–3447 (2001). CASPubMedPubMed Central Google Scholar
Kao, H. Y. et al. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J. Biol. Chem.276, 47496–47507 (2001). CASPubMed Google Scholar
Grozinger, C. M. & Schreiber, S. L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl Acad. Sci. USA97, 7835–7840 (2000). CASPubMedPubMed Central Google Scholar
Bolger, T. A. & Yao, T. P. Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J. Neurosci.25, 9544–9553 (2005). CASPubMedPubMed Central Google Scholar
Chawla, S., Vanhoutte, P., Arnold, F. J., Huang, C. L. & Bading, H. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem.85, 151–159 (2003). CASPubMed Google Scholar
Deckel, A. W., Elder, R. & Fuhrer, G. Biphasic developmental changes in Ca2+/calmodulin-dependent proteins in R6/2 Huntington's disease mice. Neuroreport13, 707–711 (2002). CASPubMed Google Scholar
Hoshino, M. et al. Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J. Neurochem.87, 257–267 (2003). CASPubMed Google Scholar
Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Predominant expression of Sir2α, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett.556, 281–286 (2004). CASPubMed Google Scholar
Hisahara, S., Chiba, S., Matsumoto, H. & Horio, Y. Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2α). J. Pharmacol. Sci.98, 200–204 (2005). CASPubMed Google Scholar
Cha, J. -H. J. Transcriptional dysregulation in Huntington's disease. Trends Neurosci.23, 387–392 (2000). CASPubMed Google Scholar
Luthi-Carter, R. et al. Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Hum. Mol. Genet.11, 1911–1926 (2002). CASPubMed Google Scholar
Luthi-Carter, R. et al. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. Hum. Mol. Genet.11, 1927–1937 (2002). CASPubMed Google Scholar
Hodges, A. et al. Regional and cellular gene expression changes in human Huntington's disease brain. Hum. Mol. Genet.15, 965–977 (2006). The above three papers contain important microarray expression profile information about HD and DRPLA. CASPubMed Google Scholar
Steffan, J. S. et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci. USA97, 6763–6768 (2000). The first paper to implicate aberrant interactions between CBP and HTT in transcriptional repression in HD. CASPubMedPubMed Central Google Scholar
Nucifora, F. C. Jr et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science291, 2423–2428 (2001). Highlights the implications of CBP in the pathogenic mechanism of polyglutamine repeat disease. CASPubMed Google Scholar
McCampbell, A. et al. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet.9, 2197–2202 (2000). CASPubMed Google Scholar
McCampbell, A. & Fischbeck, K. H. Polyglutamine and CBP: fatal attraction? Nature Med.7, 528–530 (2001). CASPubMed Google Scholar
Dunah, A. W. et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science296, 2238–2243 (2002). CASPubMed Google Scholar
van Roon-Mom, W. M. et al. Insoluble TATA-binding protein accumulation in Huntington's disease cortex. Brain Res. Mol. Brain Res.109, 1–10 (2002). CASPubMed Google Scholar
Igarashi, S. et al. Inducible PC12 cell model of Huntington's disease shows toxicity and decreased histone acetylation. Neuroreport14, 565–568 (2003). CASPubMed Google Scholar
Hazeki, N. et al. Ultrastructure of nuclear aggregates formed by expressing an expanded polyglutamine. Biochem. Biophys. Res. Commun.294, 429–440 (2002). CASPubMed Google Scholar
Mori, N., Schoenherr, C., Vandenbergh, D. J. & Anderson, D. J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron9, 45–54 (1992). CASPubMed Google Scholar
Schoenherr, C. J., Paquette, A. J. & Anderson, D. J. Identification of potential target genes for the neuron-restrictive silencer factor. Proc. Natl Acad. Sci. USA93, 9881–9886 (1996). CASPubMedPubMed Central Google Scholar
Chen, Z. -F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genet.20, 136–142 (1998). CASPubMed Google Scholar
Zuccato, C. et al. Loss of huntingtin-mediated BDNF gene transcription in huntington's disease. Science293, 493–498 (2001). CASPubMed Google Scholar
Zuccato, C. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. 35, 76–83 (2003).
Bates, E. A., Victor, M., Jones, A. K., Shi, Y. & Hart, A. C. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci.26, 2830–2838 (2006). CASPubMedPubMed Central Google Scholar
Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature417, 455–458 (2002). CASPubMed Google Scholar
Bali, P. et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem.280, 26729–26734 (2005). CASPubMed Google Scholar
Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell18, 601–607 (2005). CASPubMed Google Scholar
Hook, S. S., Orian, A., Cowley, S. M. & Eisenman, R. N. Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc. Natl Acad. Sci. USA99, 13425–13430 (2002). CASPubMedPubMed Central Google Scholar
Hideshima, T. et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc. Natl Acad. Sci. USA102, 8567–8572 (2005). CASPubMedPubMed Central Google Scholar
Iwata, A., Riley, B. E., Johnston, J. A. & Kopito, R. R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem.280, 40282–40292 (2005). CASPubMed Google Scholar
Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell115, 727–738 (2003). CASPubMed Google Scholar
Grubisha, O., Smith, B. C. & Denu, J. M. Small molecule regulation of Sir2 protein deacetylases. FEBS J.272, 4607–4616 (2005). CASPubMed Google Scholar
Ghosh, S. & Feany, M. B. Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. Hum. Mol. Genet.13, 2011–2018 (2004). CASPubMed Google Scholar
Parker, J. A. et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet.37, 349–350 (2005). CASPubMed Google Scholar
Sinclair, D. Sirtuins for healthy neurons. Nature Genet.37, 339–340 (2005). CASPubMed Google Scholar
Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell88, 323–331 (1997). CASPubMed Google Scholar
Hughes, P. E., Alexi, T. & Schreiber, S. S. A role for the tumour suppressor gene p53 in regulating neuronal apoptosis. Neuroreport8, v–xii (1997). CASPubMed Google Scholar
Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell90, 595–606 (1997). CASPubMed Google Scholar
Ito, A. et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J.21, 6236–6245 (2002). CASPubMedPubMed Central Google Scholar
Gang Liu, X. C. Regulation of the p53 transcriptional activity. J. Cell. Biochem.97, 448–458 (2006). PubMed Google Scholar
Luo, J. et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl Acad. Sci. USA101, 2259–2264 (2004). CASPubMedPubMed Central Google Scholar
Bae, B. I. et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron47, 29–41 (2005). CASPubMed Google Scholar
Feng, D. & Kan, Y. W. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of β-like globin genes. Proc. Natl Acad. Sci. USA102, 9896–9900 (2005). CASPubMedPubMed Central Google Scholar
Murphy, M. et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev.13, 2490–2501 (1999). CASPubMedPubMed Central Google Scholar
Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature408, 377–381 (2000). CASPubMed Google Scholar
Juan, L. J. et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J. Biol. Chem.275, 20436–20443 (2000). CASPubMed Google Scholar
Pratt, W. B. & Toft, D. O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood)228, 111–133 (2003). CAS Google Scholar
Bagatell, R. et al. Destabilization of steroid receptors by heat shock protein 90-binding drugs: a ligand-independent approach to hormonal therapy of breast cancer. Clin. Cancer Res.7, 2076–2084 (2001). CASPubMed Google Scholar
Neckers, L. Heat shock protein 90 inhibition by 17-allylamino-17- demethoxygeldanamycin: a novel therapeutic approach for treating hormone-refractory prostate cancer. Clin. Cancer Res.8, 962–966 (2002). CASPubMed Google Scholar
Waza, M. et al. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nature Med.11, 1088–1095 (2005). CASPubMed Google Scholar
Aoyagi, S. & Archer, T. K. Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol.15, 565–567 (2005). CASPubMed Google Scholar
Chen, L. et al. Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Mol. Cancer Ther.4, 1311–1319 (2005). CASPubMed Google Scholar
Ren, M., Leng, Y., Jeong, M., Leeds, P. R. & Chuang, D. M. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem.89, 1358–1367 (2004). CASPubMed Google Scholar
Zhao, Y. et al. Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors. J. Exp. Biol.208, 697–705 (2005). CASPubMed Google Scholar
Hay, D. G. et al. Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum. Mol. Genet.13, 1389–1405 (2004). CASPubMed Google Scholar
Woodman, B. et al. The HdhQ150/Q150 knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res. Bull. (in the press).
Li, F., Macfarlan, T., Pittman, R. N. & Chakravarti, D. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J. Biol. Chem.277, 45004–45012 (2002). CASPubMed Google Scholar
Gatchel, J. R. & Zoghbi, H. Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nature Rev. Genet.6, 743–755 (2005). CASPubMed Google Scholar
Tsai, C. C. et al. Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc. Natl Acad. Sci. USA101, 4047–4052 (2004). CASPubMedPubMed Central Google Scholar
Matilla, A. et al. The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature389, 974–978 (1997). CASPubMed Google Scholar
Seo, S. et al. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell104, 119–130 (2001). CASPubMed Google Scholar
Chen, H. K. et al. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell113, 457–468 (2003). CASPubMed Google Scholar
Burnett, B., Li, F. & Pittman, R. N. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum. Mol. Genet.12, 3195–3205 (2003). CASPubMed Google Scholar
Burnett, B. G. & Pittman, R. N. The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proc. Natl Acad. Sci. USA102, 4330–4335 (2005). CASPubMedPubMed Central Google Scholar
Palhan, V. B. et al. Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc. Natl Acad. Sci. USA102, 8472–8477 (2005). CASPubMedPubMed Central Google Scholar
McMahon, S. J., Pray-Grant, M. G., Schieltz, D., Yates, J. R. & Grant, P. A. Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc. Natl Acad. Sci. USA102, 8478–8482 (2005). CASPubMedPubMed Central Google Scholar
Sterner, D. E., Belotserkovskaya, R. & Berger, S. L. SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription. Proc. Natl Acad. Sci. USA99, 11622–11627 (2002). CASPubMedPubMed Central Google Scholar
Pray-Grant, M. G. et al. The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol. Cell. Biol.22, 8774–8786 (2002). CASPubMedPubMed Central Google Scholar
Helmlinger, D. et al. Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction. PLoS Biol.4, e67 (2006). PubMedPubMed Central Google Scholar
Schilling, G. et al. Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron24, 275–286 (1999). CASPubMed Google Scholar
Wood, J. D. et al. Atrophin-1, the dentato-rubral and pallido-luysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription. J. Cell Biol.150, 939–948 (2000). CASPubMedPubMed Central Google Scholar
Gelmetti, V. et al. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol. Cell. Biol.18, 7185–7191 (1998). CASPubMedPubMed Central Google Scholar
Lutterbach, B. et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol. Cell. Biol.18, 7176–7184 (1998). CASPubMedPubMed Central Google Scholar
Wang, J., Hoshino, T., Redner, R. L., Kajigaya, S. & Liu, J. M. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc. Natl Acad. Sci. USA95, 10860–10865 (1998). CASPubMedPubMed Central Google Scholar
Ying, M. et al. Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA. J. Biol. Chem.281, 12580–12586 (2006). CASPubMed Google Scholar
Wang, L., Rajan, H., Pitman, J. L., McKeown, M. & Tsai, C. -C. Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors. Genes Dev.20, 525–530 (2006). PubMedPubMed Central Google Scholar
McCampbell, A. et al. Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc. Natl Acad. Sci. USA98, 15179–15184 (2001). CASPubMedPubMed Central Google Scholar
Steffan, J. S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature413, 739–743 (2001). The first study inDrosophilato show HDAC inhibitors as a beneficial therapy for polyglutamine repeat disease. CASPubMed Google Scholar
Hockly, E. et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl Acad. Sci. USA100, 2041–2046 (2003). The first published study of the use of an HDAC inhibitor as a therapeutic agent in a mouse model of HD. CASPubMedPubMed Central Google Scholar
Ferrante, R. J. et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci.23, 9418–9427 (2003). CASPubMedPubMed Central Google Scholar
Gardian, G. et al. Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington's disease. J. Biol. Chem.280, 556–563 (2005). CASPubMed Google Scholar
Drummond, D. C. et al. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol.45, 495–528 (2005). CASPubMed Google Scholar
Miller, T. A., Witter, D. J. & Belvedere, S. Histone deacetylase inhibitors. J. Med. Chem.46, 5097–5116 (2003). CASPubMed Google Scholar
Grozinger, C. M. & Schreiber, S. L. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol.9, 3–16 (2002). CASPubMed Google Scholar
Vannini, A. et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl Acad. Sci. USA101, 15064–15069 (2004). CASPubMedPubMed Central Google Scholar
Minamiyama, M. et al. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet.13, 1183–1192 (2004). CASPubMed Google Scholar
Borovecki, F. et al. Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. Proc. Natl Acad. Sci. USA102, 11023–11028 (2005). CASPubMedPubMed Central Google Scholar
Agrawal, N. et al. Identification of combinatorial drug regimens for treatment of Huntington's disease using Drosophila. Proc. Natl Acad. Sci. USA102, 3777–3781 (2005). CASPubMedPubMed Central Google Scholar
Byers, R. K. & Banker, B. Q. Infantile muscular atrophy. Arch. Neurol.5, 140–164 (1961). CASPubMed Google Scholar
Brzustowicz, L. M. et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature344, 540–541 (1990). CASPubMed Google Scholar
Melki, J. et al. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature344, 767–768 (1990). CASPubMed Google Scholar
Gilliam, T. C. et al. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature345, 823–825 (1990). CASPubMed Google Scholar
Lefebvre, S. et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nature Genet.16, 265–269 (1997). CASPubMed Google Scholar
Iannaccone, S. T., Smith, S. A. & Simard, L. R. Spinal muscular atrophy. Curr. Neurol. Neurosci. Rep.4, 74–80 (2004). PubMed Google Scholar
Chang, J. G. et al. Treatment of spinal muscular atrophy by sodium butyrate. Proc. Natl Acad. Sci. USA98, 9808–9813 (2001). CASPubMedPubMed Central Google Scholar
Sumner, C. J. et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann. Neurol.54, 647–654 (2003). CASPubMed Google Scholar
Brichta, L. et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum. Mol. Genet.12, 2481–2489 (2003). CASPubMed Google Scholar
Andreassi, C. et al. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur. J. Hum. Genet.12, 59–65 (2004). CASPubMed Google Scholar
Riessland, M. Brichta, L., Hahnen, E. & Wirth, B. The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Hum. Genet. 1–10 (2006).
Kernochan, L. E. et al. The role of histone acetylation in SMN gene expression. Hum. Mol. Genet.14, 1171–1182 (2005). CASPubMed Google Scholar
Jung, M. et al. Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J. Med. Chem.42, 4669–4679 (1999). CASPubMed Google Scholar
Furumai, R. et al. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl Acad. Sci. USA98, 87–92 (2001). CASPubMed Google Scholar
Roopra, A. et al. Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol. Cell. Biol.20, 2147–2157 (2000). CASPubMedPubMed Central Google Scholar
Kao, H. Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev.12, 2269–2277 (1998). CASPubMedPubMed Central Google Scholar
Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev.13, 1924–1935 (1999). CASPubMedPubMed Central Google Scholar
Amann, J. M. et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol. Cell. Biol.21, 6470–6483 (2001). CASPubMedPubMed Central Google Scholar
Wen, Y. D. et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc. Natl Acad. Sci. USA97, 7202–7207 (2000). CASPubMedPubMed Central Google Scholar
Li, J. et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J.19, 4342–4350 (2000). CASPubMedPubMed Central Google Scholar
Grozinger, C. M., Hassig, C. A. & Schreiber, S. L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. PNAS96, 4868–4873 (1999). CASPubMedPubMed Central Google Scholar
Waltregny, D. et al. Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. FASEB J.19, 966–998 (2005). CASPubMed Google Scholar
Lemercier, C. et al. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J. Biol. Chem.275, 15594–15599 (2000). CASPubMed Google Scholar
Huntington's Disease Collaborative Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell72, 971–983 (1993).
Spada, A. R. L., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature352, 77–79 (1991). PubMed Google Scholar
Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet.6, 9–13 (1994). CASPubMed Google Scholar
Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet.6, 14–18 (1994). CASPubMed Google Scholar
Orr, H. T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet.4, 221–226 (1993). CASPubMed Google Scholar
Matilla, T. et al. Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum. Mol. Genet.2, 2123–2128 (1993). CASPubMed Google Scholar
Imbert, G. et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet.14, 285–291 (1996). CASPubMed Google Scholar
Sanpei, K. et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet.14, 277–284 (1996). CASPubMed Google Scholar
Pulst, S. -M. et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet.14, 269–276 (1996). CASPubMed Google Scholar
Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. 8, Nature Genet. 221–228 (1994). CASPubMed Google Scholar
Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nature Genet.15, 62–69 (1997). CASPubMed Google Scholar
David, G. et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet.17, 65–70 (1997). CASPubMed Google Scholar
Lindblad, K. et al. An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res.6, 965–971 (1996). CASPubMed Google Scholar
Koide, R. et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum. Mol. Genet.8, 2047–2053 (1999). CASPubMed Google Scholar
Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell15, 95–105 (2004). CASPubMed Google Scholar