Non-glucose risk factors in the pathogenesis of diabetic peripheral neuropathy (original) (raw)

References

  1. K.A. Head, Peripheral neuropathy: pathogenic mechanisms and alternative therapies. Altern. Med. Rev. 11(4), 294–329 (2006)
    PubMed Google Scholar
  2. J.B. Buse, D.J. Wexler, A. Tsapas, P. Rossing, G. Mingrone, C. Mathieu, D.A. D’Alessio, M.J. Davies, 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the study of diabetes (EASD). Diabetes. Care. 43(2), 487–493 (2020). https://doi.org/10.2337/dci19-0066
    Article CAS PubMed Google Scholar
  3. M.K. Kim, S.H. Ko, B.Y. Kim, E.S. Kang, J. Noh, S.K. Kim, S.O. Park, K.Y. Hur, S. Chon, M.K. Moon, N.H. Kim, S.Y. Kim, S.Y. Rhee, K.W. Lee, J.H. Kim, E.J. Rhee, S. Chun, S.H. Yu, D.J. Kim, H.S. Kwon, K.S. Park; Committee of Clinical Practice Guidelines, K.D.A., 2019 clinical practice guidelines for type 2 diabetes mellitus in Korea. Diabetes Metab J. 43(4), 398–406 (2019). https://doi.org/10.4093/dmj.2019.0137
    Article PubMed PubMed Central Google Scholar
  4. C. Diabetes; Complications Trial Research, G., D.M. Nathan, S. Genuth, J. Lachin, P. Cleary, O. Crofford, M. Davis, L. Rand, C. Siebert, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329(14), 977–986 (1993). https://doi.org/10.1056/NEJM199309303291401
    Article Google Scholar
  5. D.M. Nathan, P.A. Cleary, J.Y. Backlund, S.M. Genuth, J.M. Lachin, T.J. Orchard, P. Raskin, B. Zinman, C. Diabetes, Complications Trial/Epidemiology of Diabetes, I., Complications Study Research, G.: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353(25), 2643–2653 (2005). https://doi.org/10.1056/NEJMoa052187
    Article PubMed Google Scholar
  6. S. Yagihashi, H. Mizukami, K. Sugimoto, Mechanism of diabetic neuropathy: where are we now and where to go? J. Diabetes Investig. 2(1), 18–32 (2011). https://doi.org/10.1111/j.2040-1124.2010.00070.x
    Article CAS PubMed Google Scholar
  7. F. Garcia Soriano, L. Virag, P. Jagtap, E. Szabo, J.G. Mabley, L. Liaudet, A. Marton, D.G. Hoyt, K.G. Murthy, A.L. Salzman, G.J. Southan, C. Szabo, Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat. Med. 7(1), 108–113 (2001). https://doi.org/10.1038/83241
    Article CAS PubMed Google Scholar
  8. R.J. Heine, B. Balkau, A. Ceriello, S. Del Prato, E.S. Horton, M.R. Taskinen, What does postprandial hyperglycaemia mean? Diabet. Med. 21(3), 208–213 (2004)
    Article CAS Google Scholar
  9. A.E. Caballero, S. Arora, R. Saouaf, S.C. Lim, P. Smakowski, J.Y. Park, G.L. King, F.W. LoGerfo, E.S. Horton, A. Veves, Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 48(9), 1856–1862 (1999)
    Article CAS Google Scholar
  10. S. Thrainsdottir, R.A. Malik, L.B. Dahlin, P. Wiksell, K.F. Eriksson, I. Rosen, J. Petersson, D.A. Greene, G. Sundkvist, Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes 52(10), 2615–2622 (2003)
    Article CAS Google Scholar
  11. R. Stavniichuk, V.R. Drel, H. Shevalye, I. Vareniuk, M.J. Stevens, J.L. Nadler, I.G. Obrosova, Role of 12/15-lipoxygenase in nitrosative stress and peripheral prediabetic and diabetic neuropathies. Free Radic. Biol. Med. 49(6), 1036–1045 (2010). https://doi.org/10.1016/j.freeradbiomed.2010.06.016
    Article CAS PubMed PubMed Central Google Scholar
  12. S. Tesfaye, N. Chaturvedi, S.E. Eaton, J.D. Ward, C. Manes, C. Ionescu-Tirgoviste, D.R. Witte, J.H. Fuller, E.P.C.S. Group, Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 352(4), 341–350 (2005). https://doi.org/10.1056/NEJMoa032782
    Article CAS PubMed Google Scholar
  13. R.M. Herman, J.B. Brower, D.G. Stoddard, A.R. Casano, J.H. Targovnik, J.H. Herman, P. Tearse, Prevalence of somatic small fiber neuropathy in obesity. Int. J. Obes. (Lond) 31(2), 226–235 (2007). https://doi.org/10.1038/sj.ijo.0803418
    Article CAS Google Scholar
  14. A.G. Smith, K. Rose, J.R. Singleton, Idiopathic neuropathy patients are at high risk for metabolic syndrome. J. Neurol. Sci. 273(1-2), 25–28 (2008). https://doi.org/10.1016/j.jns.2008.06.005
    Article PubMed PubMed Central Google Scholar
  15. A.M. Stino, A.G. Smith, Peripheral neuropathy in prediabetes and the metabolic syndrome. J. Diabetes. Investig. 8(5), 646–655 (2017). https://doi.org/10.1111/jdi.12650
    Article CAS PubMed PubMed Central Google Scholar
  16. R.R. Holman, S.K. Paul, M.A. Bethel, D.R. Matthews, H.A. Neil, 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359(15), 1577–1589 (2008). https://doi.org/10.1056/NEJMoa0806470
    Article CAS PubMed Google Scholar
  17. D. Ziegler, N. Papanas, A.I. Vinik, J.E. Shaw, Epidemiology of polyneuropathy in diabetes and prediabetes. Handb Clin Neurol. 126, 3–22 (2014). https://doi.org/10.1016/B978-0-444-53480-4.00001-1
    Article PubMed Google Scholar
  18. N. Papanas, D. Ziegler, Prediabetic neuropathy: does it exist? Curr. Diab. Rep. 12(4), 376–383 (2012). https://doi.org/10.1007/s11892-012-0278-3
    Article PubMed Google Scholar
  19. N. Papanas, A.I. Vinik, D. Ziegler, Neuropathy in prediabetes: does the clock start ticking early? Nat. Rev. Endocrinol. 7(11), 682–690 (2011). https://doi.org/10.1038/nrendo.2011.113
    Article CAS PubMed Google Scholar
  20. A. Vinik, J. Ullal, H.K. Parson, C.M. Casellini, Diabetic neuropathies: clinical manifestations and current treatment options. Nat. Clin. Pract. Endocrinol. Metab. 2(5), 269–281 (2006). https://doi.org/10.1038/ncpendmet0142
    Article CAS PubMed Google Scholar
  21. A.I. Vinik, M.L. Nevoret, C. Casellini, H. Parson, Diabetic neuropathy. Endocrinol. Metab. Clin. North Am. 42(4), 747–787 (2013). https://doi.org/10.1016/j.ecl.2013.06.001
    Article PubMed Google Scholar
  22. P.J. O’Connor, F. Ismail-Beigi, Near-normalization of glucose and microvascular diabetes complications: data from ACCORD and ADVANCE. Ther. Adv. Endocrinol. Metab. 2(1), 17–26 (2011). https://doi.org/10.1177/2042018810390545
    Article CAS PubMed PubMed Central Google Scholar
  23. C.L. Martin, J.W. Albers, R. Pop-Busui, D.E.R. Group, Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 37(1), 31–38 (2014). https://doi.org/10.2337/dc13-2114
    Article CAS PubMed Google Scholar
  24. D.S. Younger, G. Rosoklija, A.P. Hays, W. Trojaborg, N. Latov, Diabetic peripheral neuropathy: a clinicopathologic and immunohistochemical analysis of sural nerve biopsies. Muscle Nerve 19(6), 722–727 (1996). https://doi.org/10.1002/(SICI)1097-4598(199606)19:6<722::AID-MUS6>3.0.CO;2-C
  25. J. Satoh, S. Yagihashi, T. Toyota, The possible role of tumor necrosis factor-alpha in diabetic polyneuropathy. Exp. Diabesity Res. 4(2), 65–71 (2003). https://doi.org/10.1155/EDR.2003.65
    Article PubMed PubMed Central Google Scholar
  26. G. Conti, E. Scarpini, P. Baron, S. Livraghi, M. Tiriticco, R. Bianchi, C. Vedeler, G. Scarlato, Macrophage infiltration and death in the nerve during the early phases of experimental diabetic neuropathy: a process concomitant with endoneurial induction of IL-1beta and p75NTR. J. Neurol. Sci. 195(1), 35–40 (2002)
    Article CAS Google Scholar
  27. S. Yagihashi, S. Yamagishi, R. Wada, Pathology and pathogenetic mechanisms of diabetic neuropathy: correlation with clinical signs and symptoms. Diabetes Res. Clin. Pract. 77(Suppl 1), S184–S189 (2007). https://doi.org/10.1016/j.diabres.2007.01.054
    Article CAS PubMed Google Scholar
  28. G.G. Duncan, F.A. Elliott, T.G. Duncan, J. Schatanoff, Some clinical potentials of chlorophenoxyisobutyrate (Clofibrate) therapy. (Hyperlipidemia-angina pectoris-blood sludging-diabetic neuropathy). Trans. Am. Clin. Climatol. Assoc. 79, 216–228 (1968)
    CAS PubMed PubMed Central Google Scholar
  29. A.M. Vincent, J.M. Hayes, L.L. McLean, A. Vivekanandan-Giri, S. Pennathur, E.L. Feldman, Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes. 58(10), 2376–2385 (2009). https://doi.org/10.2337/db09-0047
    Article CAS PubMed PubMed Central Google Scholar
  30. A. Gordon Smith, J. Robinson Singleton, Idiopathic neuropathy, prediabetes and the metabolic syndrome. J. Neurol. Sci. 242(1-2), 9–14 (2006). https://doi.org/10.1016/j.jns.2005.11.020
    Article CAS PubMed Google Scholar
  31. P. Fioretto, P.M. Dodson, D. Ziegler, R.S. Rosenson, Residual microvascular risk in diabetes: unmet needs and future directions. Nat. Rev. Endocrinol. 6(1), 19–25 (2010). https://doi.org/10.1038/nrendo.2009.213
    Article PubMed Google Scholar
  32. A.M. Vincent, L.M. Hinder, R. Pop-Busui, E.L. Feldman, Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J. Peripher. Nerv. Syst. 14(4), 257–267 (2009). https://doi.org/10.1111/j.1529-8027.2009.00237.x
    Article CAS PubMed PubMed Central Google Scholar
  33. E.P. Davidson, L.J. Coppey, A. Holmes, S. Lupachyk, B.L. Dake, C.L. Oltman, R.G. Peterson, M.A. Yorek, Characterization of diabetic neuropathy in the Zucker diabetic Sprague-Dawley rat: a new animal model for type 2 diabetes. J. Diabetes. Res. 2014, 714273 (2014). https://doi.org/10.1155/2014/714273
    Article CAS PubMed PubMed Central Google Scholar
  34. B.L. Guilford, D.E. Wright, Chewing the fat: genetic approaches to model dyslipidemia-induced diabetic neuropathy in mice. Exp. Neurol. 248, 504–508 (2013). https://doi.org/10.1016/j.expneurol.2013.07.016
    Article CAS PubMed PubMed Central Google Scholar
  35. A. Rosales-Hernandez, A. Cheung, P. Podgorny, C. Chan, C. Toth, Absence of clinical relationship between oxidized low density lipoproteins and diabetic peripheral neuropathy: a case control study. Lipids Health Dis. 13, 32 (2014). https://doi.org/10.1186/1476-511X-13-32
    Article CAS PubMed PubMed Central Google Scholar
  36. A. Holmes, L.J. Coppey, E.P. Davidson, M.A. Yorek, Rat models of diet-induced obesity and high fat/low dose streptozotocin type 2 diabetes: effect of reversal of high fat diet compared to treatment with enalapril or menhaden oil on glucose utilization and neuropathic endpoints. J. Diabetes Res. 2015, 307285 (2015). https://doi.org/10.1155/2015/307285
    Article CAS PubMed PubMed Central Google Scholar
  37. Y.R. Cho, J.H. Lim, M.Y. Kim, T.W. Kim, B.Y. Hong, Y.S. Kim, Y.S. Chang, H.W. Kim, C.W. Park, Therapeutic effects of fenofibrate on diabetic peripheral neuropathy by improving endothelial and neural survival in db/db mice. PLoS ONE. 9(1), e83204 (2014). https://doi.org/10.1371/journal.pone.0083204
    Article CAS PubMed PubMed Central Google Scholar
  38. A.E. Rumora, M.G. Savelieff, S.A. Sakowski, E.L. Feldman, Disorders of mitochondrial dynamics in peripheral neuropathy: Clues from hereditary neuropathy and diabetes. Int. Rev. Neurobiol. 145, 127–176 (2019). https://doi.org/10.1016/bs.irn.2019.05.002
    Article CAS PubMed Google Scholar
  39. A.G. Smith, J.R. Singleton, Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J. Diabetes Compl. 27(5), 436–442 (2013). https://doi.org/10.1016/j.jdiacomp.2013.04.003
    Article Google Scholar
  40. E.A. Jarmuzewska, A. Ghidoni, A.A. Mangoni, Hypertension and sensorimotor peripheral neuropathy in type 2 diabetes. Eur. Neurol. 57(2), 91–95 (2007). https://doi.org/10.1159/000098058
    Article CAS PubMed Google Scholar
  41. J.C. Ansquer, C. Foucher, P. Aubonnet, K. Le Malicot, Fibrates and microvascular complications in diabetes-insight from the FIELD study. Curr. Pharm. Des. 15(5), 537–552 (2009)
    Article CAS Google Scholar
  42. A. Othman, R. Bianchi, I. Alecu, Y. Wei, C. Porretta-Serapiglia, R. Lombardi, A. Chiorazzi, C. Meregalli, N. Oggioni, G. Cavaletti, G. Lauria, A. von Eckardstein, T. Hornemann, Lowering plasma 1-deoxysphingolipids improves neuropathy in diabetic rats. Diabetes. 64(3), 1035–1045 (2015). https://doi.org/10.2337/db14-1325
    Article CAS PubMed Google Scholar
  43. A. Othman, R. Benghozi, I. Alecu, Y. Wei, E. Niesor, A. von Eckardstein, T. Hornemann, Fenofibrate lowers atypical sphingolipids in plasma of dyslipidemic patients: A novel approach for treating diabetic neuropathy? J. Clin. Lipidol. 9(4), 568–575 (2015). https://doi.org/10.1016/j.jacl.2015.03.011
    Article PubMed Google Scholar
  44. Y.A. Rajabally, R.S. Shah, Dyslipidaemia in chronic acquired distal axonal polyneuropathy. J. Neurol. 258(8), 1431–1436 (2011). https://doi.org/10.1007/s00415-011-5950-z
    Article CAS PubMed Google Scholar
  45. T.D. Wiggin, K.A. Sullivan, R. Pop-Busui, A. Amato, A.A. Sima, E.L. Feldman, Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes. 58(7), 1634–1640 (2009). https://doi.org/10.2337/db08-1771
    Article CAS PubMed PubMed Central Google Scholar
  46. S. Wu, X. Cao, R. He, K. Xiong, Detrimental impact of hyperlipidemia on the peripheral nervous system: a novel target of medical epidemiological and fundamental research study. Neural. Regen. Res. 7(5), 392–399 (2012). https://doi.org/10.3969/j.issn.1673-5374.2012.05.011
    Article CAS PubMed PubMed Central Google Scholar
  47. F.S. Al-Ani, M.S. Al-Nimer, F.S. Ali, Dyslipidemia as a contributory factor in etiopathogenesis of diabetic neuropathy. Ind. J. Endocrinol. Metab. 15(2), 110–114 (2011). https://doi.org/10.4103/2230-8210.81940
    Article Google Scholar
  48. N.J. Stone, J.G. Robinson, A.H. Lichtenstein, C.N. Bairey Merz, C.B. Blum, R.H. Eckel, A.C. Goldberg, D. Gordon, D. Levy, D.M. Lloyd-Jones, P. McBride, J.S. Schwartz, S.T. Shero, S.C. Smith Jr, K. Watson, P.W. Wilson; American College of Cardiology/American Heart Association Task Force on Practice, G., 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63(25 Pt B), 2889–2934 (2014). https://doi.org/10.1016/j.jacc.2013.11.002
    Article PubMed Google Scholar
  49. E.J. Stevens, A.L. Carrington, D.R. Tomlinson, Nerve ischaemia in diabetic rats: time-course of development, effect of insulin treatment plus comparison of streptozotocin and BB models. Diabetologia. 37(1), 43–48 (1994)
    Article CAS Google Scholar
  50. T.M. Davis, B.B. Yeap, W.A. Davis, D.G. Bruce, Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia. 51(4), 562–566 (2008). https://doi.org/10.1007/s00125-007-0919-2
    Article CAS PubMed Google Scholar
  51. D. Tomassoni, E. Traini, L. Vitaioli, F. Amenta, Morphological and conduction changes in the sciatic nerve of spontaneously hypertensive rats. Neurosci. Lett. 362(2), 131–135 (2004). https://doi.org/10.1016/j.neulet.2004.03.014
    Article CAS PubMed Google Scholar
  52. J.A. Gregory, C.G. Jolivalt, J. Goor, A.P. Mizisin, N.A. Calcutt, Hypertension-induced peripheral neuropathy and the combined effects of hypertension and diabetes on nerve structure and function in rats. Acta Neuropathol. 124(4), 561–573 (2012). https://doi.org/10.1007/s00401-012-1012-6
    Article PubMed Google Scholar
  53. A. De Visser, A. Hemming, C. Yang, S. Zaver, R. Dhaliwal, Z. Jawed, C. Toth, The adjuvant effect of hypertension upon diabetic peripheral neuropathy in experimental type 2 diabetes. Neurobiol Dis. 62, 18–30 (2014). https://doi.org/10.1016/j.nbd.2013.07.019
    Article CAS PubMed Google Scholar
  54. H. Takata, Y. Takeda, A. Zhu, Y. Cheng, T. Yoneda, M. Demura, K. Yagi, S. Karashima, M. Yamagishi, Protective effects of mineralocorticoid receptor blockade against neuropathy in experimental diabetic rats. Diabetes Obes. Metab. 14(2), 155–162 (2012). https://doi.org/10.1111/j.1463-1326.2011.01499.x
    Article CAS PubMed Google Scholar
  55. J.W. Mold, S.K. Vesely, B.A. Keyl, J.B. Schenk, M. Roberts, The prevalence, predictors, and consequences of peripheral sensory neuropathy in older patients. J. Am. Board Fam. Pract. 17(5), 309–318 (2004)
    Article Google Scholar
  56. D.Y. Cho, J.W. Mold, M. Roberts, Further investigation of the negative association between hypertension and peripheral neuropathy in the elderly: an Oklahoma Physicians Resource/Research Network (OKPRN) Study. J. Am. Board Fam. Med. 19(3), 240–250 (2006)
    Article Google Scholar
  57. R.E. Schmidt, D.A. Dorsey, L.N. Beaudet, K.E. Frederick, C.A. Parvin, S.B. Plurad, M.G. Levisetti, Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy. Am. J. Pathol. 163(5), 2077–2091 (2003). https://doi.org/10.1016/S0002-9440(10)63565-1
    Article PubMed PubMed Central Google Scholar
  58. A.I. Vinik, R. Freeman, T. Erbas, Diabetic autonomic neuropathy. Semin. Neurol. 23(4), 365–372 (2003). https://doi.org/10.1055/s-2004-817720
    Article PubMed Google Scholar
  59. K.C. Tomlinson, S.M. Gardiner, T. Bennett, Blood pressure in streptozotocin-treated Brattleboro and Long-Evans rats. Am. J. Physiol. 258(4 Pt 2), R852–R859 (1990)
    CAS PubMed Google Scholar
  60. L. Edwards, C. Ring, D. McIntyre, J.B. Winer, U. Martin, Cutaneous sensibility and peripheral nerve function in patients with unmedicated essential hypertension. Psychophysiology. 45(1), 141–147 (2008). https://doi.org/10.1111/j.1469-8986.2007.00608.x
    Article PubMed Google Scholar
  61. K.Y. Forrest, R.E. Maser, G. Pambianco, D.J. Becker, T.J. Orchard, Hypertension as a risk factor for diabetic neuropathy: a prospective study. Diabetes. 46(4), 665–670 (1997)
    Article CAS Google Scholar
  62. S.M. Manschot, W.H. Gispen, L.J. Kappelle, G.J. Biessels, Nerve conduction velocity and evoked potential latencies in streptozotocin-diabetic rats: effects of treatment with an angiotensin converting enzyme inhibitor. Diabet. Metab. Res. Rev. 19(6), 469–477 (2003). https://doi.org/10.1002/dmrr.401
    Article CAS Google Scholar
  63. T. Cavusoglu, T. Karadeniz, E. Cagiltay, M. Karadeniz, G. Yigitturk, E. Acikgoz, Y. Uyanikgil, U. Ates, M.I. Tuglu, O. Erbas, The protective effect of losartan on diabetic neuropathy in a diabetic rat model. Exp clin endocrinol diabetes 123(8), 479–484 (2015). https://doi.org/10.1055/s-0035-1550019
    Article CAS PubMed Google Scholar
  64. E.K. Maxfield, N.E. Cameron, M.A. Cotter, K.C. Dines, Angiotensin II receptor blockade improves nerve function, modulates nerve blood flow and stimulates endoneurial angiogenesis in streptozotocin-diabetic rats and nerve function. Diabetologia. 36(12), 1230–1237 (1993)
    Article CAS Google Scholar
  65. A. Reja, S. Tesfaye, N.D. Harris, J.D. Ward, Is ACE inhibition with lisinopril helpful in diabetic neuropathy? Diabet. Med. 12(4), 307–309 (1995)
    Article CAS Google Scholar
  66. R.A. Malik, S. Williamson, C. Abbott, A.L. Carrington, J. Iqbal, W. Schady, A.J. Boulton, Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomised double-blind controlled trial. Lancet. 352(9145), 1978–1981 (1998). https://doi.org/10.1016/S0140-6736(98)02478-7
    Article CAS PubMed Google Scholar
  67. J. Elliott, S. Tesfaye, N. Chaturvedi, R.A. Gandhi, L.K. Stevens, C. Emery, J.H. Fuller, E.P.C.S. Group, Large-fiber dysfunction in diabetic peripheral neuropathy is predicted by cardiovascular risk factors. Diabetes Care. 32(10), 1896–1900 (2009). https://doi.org/10.2337/dc09-0554
    Article CAS PubMed PubMed Central Google Scholar
  68. A. Harkavyi, P.S. Whitton, Glucagon-like peptide 1 receptor stimulation as a means of neuroprotection. Br. J. Pharmacol. 159(3), 495–501 (2010). https://doi.org/10.1111/j.1476-5381.2009.00486.x
    Article CAS PubMed PubMed Central Google Scholar
  69. P. Luciani, C. Deledda, S. Benvenuti, I. Cellai, R. Squecco, M. Monici, F. Cialdai, G. Luciani, G. Danza, C. Di Stefano, F. Francini, A. Peri, Differentiating effects of the glucagon-like peptide-1 analogue exendin-4 in a human neuronal cell model. Cell Mol. Life Sci. 67(21), 3711–3723 (2010). https://doi.org/10.1007/s00018-010-0398-3
    Article CAS PubMed Google Scholar
  70. P. Anagnostis, V.G. Athyros, F. Adamidou, A. Panagiotou, M. Kita, A. Karagiannis, D.P. Mikhailidis, Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabet. Obes. Metab. 13(4), 302–312 (2011). https://doi.org/10.1111/j.1463-1326.2010.01345.x
    Article CAS Google Scholar
  71. T. Perry, D.K. Lahiri, D. Chen, J. Zhou, K.T. Shaw, J.M. Egan, N.H. Greig, A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J. Pharmacol. Exp. Ther. 300(3), 958–966 (2002)
    Article CAS Google Scholar
  72. M.J. During, L. Cao, D.S. Zuzga, J.S. Francis, H.L. Fitzsimons, X. Jiao, R.J. Bland, M. Klugmann, W.A. Banks, D.J. Drucker, C.N. Haile, Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 9(9), 1173–1179 (2003). https://doi.org/10.1038/nm919
    Article CAS PubMed Google Scholar
  73. M. Kan, G. Guo, B. Singh, V. Singh, D.W. Zochodne, Glucagon-like peptide 1, insulin, sensory neurons, and diabetic neuropathy. J. Neuropathol. Exp. Neurol. 71(6), 494–510 (2012). https://doi.org/10.1097/NEN.0b013e3182580673
    Article CAS PubMed Google Scholar
  74. M. Tsukamoto, N. Niimi, K. Sango, S. Takaku, Y. Kanazawa, K. Utsunomiya, Neurotrophic and neuroprotective properties of exendin-4 in adult rat dorsal root ganglion neurons: involvement of insulin and RhoA. Histochem. Cell Biol. 144(3), 249–259 (2015). https://doi.org/10.1007/s00418-015-1333-3
    Article CAS PubMed Google Scholar
  75. C.G. Jolivalt, M. Fineman, C.F. Deacon, R.D. Carr, N.A. Calcutt, GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice. Diabetes Obes Metab. 13(11), 990–1000 (2011). https://doi.org/10.1111/j.1463-1326.2011.01431.x
    Article CAS PubMed PubMed Central Google Scholar
  76. T. Himeno, H. Kamiya, K. Naruse, N. Harada, N. Ozaki, Y. Seino, T. Shibata, M. Kondo, J. Kato, T. Okawa, A. Fukami, Y. Hamada, N. Inagaki, Y. Seino, D.J. Drucker, Y. Oiso, J. Nakamura, Beneficial effects of exendin-4 on experimental polyneuropathy in diabetic mice. Diabetes. 60(9), 2397–2406 (2011). https://doi.org/10.2337/db10-1462
    Article CAS PubMed PubMed Central Google Scholar
  77. R. Bianchi, I. Cervellini, C. Porretta-Serapiglia, N. Oggioni, B. Burkey, P. Ghezzi, G. Cavaletti, G. Lauria, Beneficial effects of PKF275-055, a novel, selective, orally bioavailable, long-acting dipeptidyl peptidase IV inhibitor in streptozotocin-induced diabetic peripheral neuropathy. J. Pharmacol. Exp. Ther. 340(1), 64–72 (2012). https://doi.org/10.1124/jpet.111.181529
    Article CAS PubMed Google Scholar
  78. C. Holscher, Insulin, incretins and other growth factors as potential novel treatments for Alzheimer’s and Parkinson’s diseases. Biochem. Soc. Trans. 42(2), 593–599 (2014). https://doi.org/10.1042/BST20140016
    Article CAS PubMed Google Scholar
  79. H.Y. Jin, W.J. Liu, J.H. Park, H.S. Baek, T.S. Park, Effect of dipeptidyl peptidase-IV (DPP-IV) inhibitor (Vildagliptin) on peripheral nerves in streptozotocin-induced diabetic rats. Arch. Med. Res. 40(7), 536–544 (2009). https://doi.org/10.1016/j.arcmed.2009.09.005
    Article CAS PubMed Google Scholar
  80. W.J. Liu, H.Y. Jin, K.A. Lee, S.H. Xie, H.S. Baek, T.S. Park, Neuroprotective effect of the glucagon-like peptide-1 receptor agonist, synthetic exendin-4, in streptozotocin-induced diabetic rats. Br J Pharmacol. 164(5), 1410–1420 (2011). https://doi.org/10.1111/j.1476-5381.2011.01272.x
    Article CAS PubMed PubMed Central Google Scholar
  81. M. Jaiswal, C.L. Martin, M.B. Brown, B. Callaghan, J.W. Albers, E.L. Feldman, R. Pop-Busui. Effects of exenatide on measures of diabetic neuropathy in subjects with type 2 diabetes: results from an 18-month proof-of-concept open-label randomized study. J. Diabet. Compl. (2015). https://doi.org/10.1016/j.jdiacomp.2015.07.013
  82. M. Dobretsov, D. Romanovsky, J.R. Stimers, Early diabetic neuropathy: triggers and mechanisms. World J. Gastroenterol. 13(2), 175–191 (2007)
    Article CAS Google Scholar
  83. C.R. Pierson, W. Zhang, Y. Murakawa, A.A. Sima, Insulin deficiency rather than hyperglycemia accounts for impaired neurotrophic responses and nerve fiber regeneration in type 1 diabetic neuropathy. J. Neuropathol. Exp. Neurol. 62(3), 260–271 (2003)
    Article CAS Google Scholar
  84. K. Sugimoto, Y. Murakawa, W. Zhang, G. Xu, A.A. Sima, Insulin receptor in rat peripheral nerve: its localization and alternatively spliced isoforms. Diabetes Metab. Res. Rev. 16(5), 354–363 (2000)
    Article CAS Google Scholar
  85. K. Sugimoto, Y. Murakawa, A.A. Sima, Expression and localization of insulin receptor in rat dorsal root ganglion and spinal cord. J. Peripher. Nerv. Syst. 7(1), 44–53 (2002)
    Article CAS Google Scholar
  86. Y.M. Hoybergs, T.F. Meert, The effect of low-dose insulin on mechanical sensitivity and allodynia in type I diabetes neuropathy. Neurosci. Lett. 417(2), 149–154 (2007). https://doi.org/10.1016/j.neulet.2007.02.087
    Article CAS PubMed Google Scholar
  87. G.J. Biessels, E.J. Stevens, S.J. Mahmood, W.H. Gispen, D.R. Tomlinson, Insulin partially reverses deficits in peripheral nerve blood flow and conduction in experimental diabetes. J. Neurol. Sci. 140(1-2), 12–20 (1996)
    Article CAS Google Scholar
  88. J. Partanen, L. Niskanen, J. Lehtinen, E. Mervaala, O. Siitonen, M. Uusitupa, Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 333(2), 89–94 (1995). https://doi.org/10.1056/NEJM199507133330203
    Article CAS PubMed Google Scholar
  89. K. Sugimoto, M. Baba, S. Suzuki, S. Yagihashi, The impact of low-dose insulin on peripheral nerve insulin receptor signaling in streptozotocin-induced diabetic rats. PLoS ONE. 8(8), e74247 (2013). https://doi.org/10.1371/journal.pone.0074247
    Article CAS PubMed PubMed Central Google Scholar
  90. D.W. Zochodne, Diabetes and the plasticity of sensory neurons. Neurosci. Lett. 596, 60–65 (2015). https://doi.org/10.1016/j.neulet.2014.11.017
    Article CAS PubMed Google Scholar
  91. X.H. Bao, V. Wong, Q. Wang, L.C. Low, Prevalence of peripheral neuropathy with insulin-dependent diabetes mellitus. Pediatr. Neurol. 20(3), 204–209 (1999)
    Article CAS Google Scholar
  92. S.H. Kim, C.O. Baek, K.A. Lee, T.S. Park, H.S. Baek, H.Y. Jin, Clinical implication of elevated CA 19-9 level and the relationship with glucose control state in patients with type 2 diabetes. Endocrine. 46(2), 249–255 (2014). https://doi.org/10.1007/s12020-013-0058-0
    Article CAS PubMed Google Scholar
  93. D.F. Steiner, Evidence for a precursor in the biosynthesis of insulin. Trans. N Y Acad. Sci. 30(1), 60–68 (1967)
    Article CAS Google Scholar
  94. A. Vinik, Physiological and pathophysiological significance of C-peptide actions. Introduction. Exp. Diab. Res. 5(1), 3–5 (2004). https://doi.org/10.1080/15438600490447816
    Article Google Scholar
  95. C.E. Hills, N.J. Brunskill, Cellular and physiological effects of C-peptide. Clin Sci (Lond) 116(7), 565–574 (2009). https://doi.org/10.1042/CS20080441
    Article CAS Google Scholar
  96. A.A. Sima, Diabetic neuropathy in type 1 and type 2 diabetes and the effects of C-peptide. J Neurol Sci. 220(1-2), 133–136 (2004). https://doi.org/10.1016/j.jns.2004.03.014
    Article PubMed Google Scholar
  97. K. Ekberg, T. Brismar, B.L. Johansson, B. Jonsson, P. Lindstrom, J. Wahren, Amelioration of sensory nerve dysfunction by C-Peptide in patients with type 1 diabetes. Diabetes. 52(2), 536–541 (2003)
    Article CAS Google Scholar
  98. T. Forst, T. Kunt, T. Pohlmann, K. Goitom, M. Engelbach, J. Beyer, A. Pfutzner, Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. J. Clin. Invest. 101(10), 2036–2041 (1998). https://doi.org/10.1172/JCI2147
    Article CAS PubMed PubMed Central Google Scholar
  99. A.O. Shpakov, O.K. Granstrem, [C-peptide physiological effects]. Ross Fiziol Zh Im I M Sechenova. 99(2), 196–211 (2013)
    CAS PubMed Google Scholar
  100. A.A. Sima, New insights into the metabolic and molecular basis for diabetic neuropathy. Cell Mol. Life Sci. 60(11), 2445–2464 (2003). https://doi.org/10.1007/s00018-003-3084-x
    Article CAS PubMed Google Scholar
  101. A.A. Sima, C-peptide and diabetic neuropathy. Expert Opin. Investig. Drugs. 12(9), 1471–1488 (2003). https://doi.org/10.1517/13543784.12.9.1471
    Article CAS PubMed Google Scholar
  102. A.A. Sima, W. Zhang, G. Grunberger, Type 1 diabetic neuropathy and C-peptide. Exp. Diabesity Res. 5(1), 65–77 (2004). https://doi.org/10.1080/15438600490424541
    Article CAS PubMed PubMed Central Google Scholar
  103. A.A. Sima, W. Zhang, Mechanisms of diabetic neuropathy: axon dysfunction. Handb. Clin. Neurol. 126, 429–442 (2014). https://doi.org/10.1016/B978-0-444-53480-4.00031-X
    Article PubMed Google Scholar
  104. C.W. Grote, D.E. Wright, A role for insulin in diabetic neuropathy. Front. Neurosci. 10, 581 (2016). https://doi.org/10.3389/fnins.2016.00581
    Article PubMed PubMed Central Google Scholar
  105. S.B. McMahon, J.V. Priestley, Peripheral neuropathies and neurotrophic factors: animal models and clinical perspectives. Curr. Opin. Neurobiol. 5(5), 616–624 (1995)
    Article CAS Google Scholar
  106. V.M. Verge, C.S. Andreassen, T.G. Arnason, H. Andersen, Mechanisms of disease: role of neurotrophins in diabetes and diabetic neuropathy. Handb. Clin. Neurol. 126, 443–460 (2014). https://doi.org/10.1016/B978-0-444-53480-4.00032-1
    Article PubMed Google Scholar
  107. D.R. Tomlinson, P. Fernyhough, L.T. Diemel, Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes. 46(Suppl 2), S43–S49 (1997)
    Article CAS Google Scholar
  108. D.W. Zochodne, Neurotrophins and other growth factors in diabetic neuropathy. Semin. Neurol. 16(2), 153–161 (1996). https://doi.org/10.1055/s-2008-1040971
    Article CAS PubMed Google Scholar
  109. S.C. Apfel, Neurotrophic factors in the therapy of diabetic neuropathy. Am. J. Med. 107(2B), 34S–42S (1999)
    Article CAS Google Scholar
  110. P. Anand, Neurotrophic factors and their receptors in human sensory neuropathies. Prog. Brain Res. 146, 477–492 (2004). https://doi.org/10.1016/S0079-6123(03)46030-5
    Article CAS PubMed Google Scholar
  111. G. Pittenger, A. Vinik, Nerve growth factor and diabetic neuropathy. Exp. Diabes. Res. 4(4), 271–285 (2003). https://doi.org/10.1155/EDR.2003.271
    Article Google Scholar
  112. S.C. Apfel, J.C. Arezzo, M. Brownlee, H. Federoff, J.A. Kessler, Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res. 634(1), 7–12 (1994)
    Article CAS Google Scholar
  113. R.E. Schmidt, D.A. Dorsey, L.N. Beaudet, C.A. Parvin, E. Escandon, Effect of NGF and neurotrophin-3 treatment on experimental diabetic autonomic neuropathy. J. Neuropathol. Exp. Neurol. 60(3), 263–273 (2001)
    Article CAS Google Scholar
  114. K.A. Elias, M.J. Cronin, T.A. Stewart, R.C. Carlsen, Peripheral neuropathy in transgenic diabetic mice: restoration of C-fiber function with human recombinant nerve growth factor. Diabetes. 47(10), 1637–1642 (1998)
    Article CAS Google Scholar
  115. T.J. Huang, N.M. Sayers, A. Verkhratsky, P. Fernyhough, Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp. Neurol. 194(1), 279–283 (2005). https://doi.org/10.1016/j.expneurol.2005.03.001
    Article CAS PubMed Google Scholar
  116. N.A. Calcutt, J.D. Freshwater, A.P. Mizisin, Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia. 47(4), 718–724 (2004). https://doi.org/10.1007/s00125-004-1354-2
    Article CAS PubMed Google Scholar
  117. K.A. Lee, K.T. Park, H.M. Yu, H.Y. Jin, H.S. Baek, T.S. Park, Effect of granulocyte colony-stimulating factor on the peripheral nerves in streptozotocin-induced diabetic rat. Diabetes Metab. J. 37(4), 286–290 (2013). https://doi.org/10.4093/dmj.2013.37.4.286
    Article PubMed PubMed Central Google Scholar
  118. R. Levi-Montalcini, P.U. Angeletti, Essential role of the nerve growth factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Dev. Biol. 6, 653–659 (1963)
    Article CAS Google Scholar
  119. A.I. Vinik, A. Mehrabyan, Diabetic neuropathies. Med. Clin. North Am. 88(4), 947–999 (2004). https://doi.org/10.1016/j.mcna.2004.04.009. xi
    Article CAS PubMed Google Scholar
  120. L. Li, T. Yu, L. Yu, H. Li, Y. Liu, D. Wang. Exogenous brain-derived neurotrophic factor relieves pain symptoms of diabetic rats by reducing excitability of dorsal root ganglion neurons. Int. J. Neurosci. 1–10 (2015). https://doi.org/10.3109/00207454.2015.1057725
  121. S.R. Chowdhury, A. Saleh, E. Akude, D.R. Smith, D. Morrow, L. Tessler, N.A. Calcutt, P. Fernyhough, Ciliary neurotrophic factor reverses aberrant mitochondrial bioenergetics through the JAK/STAT pathway in cultured sensory neurons derived from streptozotocin-induced diabetic rodents. Cell Mol. Neurobiol. 34(5), 643–649 (2014). https://doi.org/10.1007/s10571-014-0054-9
    Article CAS PubMed Google Scholar
  122. A. Saleh, Roy Chowdhury, S.K. Smith, D.R. Balakrishnan, S. Tessler, L. Martens, C. Morrow, D. Schartner, E. Frizzi, K.E. Calcutt, N.A. Fernyhough, P.: Ciliary neurotrophic factor activates NF-kappaB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology. 65, 65–73 (2013). https://doi.org/10.1016/j.neuropharm.2012.09.015
    Article CAS PubMed Google Scholar
  123. Z. Dang, D. Maselli, G. Spinetti, E. Sangalli, F. Carnelli, F. Rosa, E. Seganfreddo, F. Canal, A. Furlan, A. Paccagnella, E. Paiola, B. Lorusso, C. Specchia, M. Albiero, R. Cappellari, A. Avogaro, A. Falco, F. Quaini, K. Ou, I. Rodriguez-Arabaolaza, C. Emanueli, M. Sambataro, G.P. Fadini, P. Madeddu, Sensory neuropathy hampers nociception-mediated bone marrow stem cell release in mice and patients with diabetes. Diabetologia. 58(11), 2653–2662 (2015). https://doi.org/10.1007/s00125-015-3735-0
    Article CAS PubMed PubMed Central Google Scholar
  124. J.M. Dominguez 2nd, M.A. Yorek, M.B. Grant, Combination therapies prevent the neuropathic, proinflammatory characteristics of bone marrow in streptozotocin-induced diabetic rats. Diabetes. 64(2), 643–653 (2015). https://doi.org/10.2337/db14-0433
    Article CAS PubMed Google Scholar
  125. S. Takaku, H. Yanagisawa, K. Watabe, H. Horie, T. Kadoya, K. Sakumi, Y. Nakabeppu, F. Poirier, K. Sango, GDNF promotes neurite outgrowth and upregulates galectin-1 through the RET/PI3K signaling in cultured adult rat dorsal root ganglion neurons. Neurochem. Int. 62(3), 330–339 (2013). https://doi.org/10.1016/j.neuint.2013.01.008
    Article CAS PubMed Google Scholar
  126. M. Tsukamoto, K. Sango, N. Niimi, H. Yanagisawa, K. Watabe, K. Utsunomiya, Upregulation of galectin-3 in immortalized Schwann cells IFRS1 under diabetic conditions. Neurosci Res. 92, 80–85 (2015). https://doi.org/10.1016/j.neures.2014.11.008
    Article CAS PubMed Google Scholar
  127. Y. Li, N. Tong. Angiotensin-converting enzyme I/D polymorphism and diabetic peripheral neuropathy in type 2 diabetes mellitus: A meta-analysis. J. Renin. Angiotensin. Aldosterone. Syst. (2014). https://doi.org/10.1177/1470320314539828
  128. C. Clair, M.J. Cohen, F. Eichler, K.J. Selby, N.A. Rigotti, The effect of cigarette smoking on diabetic peripheral neuropathy: a systematic review and meta-analysis. J. Gen. Intern. Med. 30(8), 1193–1203 (2015). https://doi.org/10.1007/s11606-015-3354-y
    Article PubMed PubMed Central Google Scholar
  129. W.S. Lv, W.J. Zhao, S.L. Gong, D.D. Fang, B. Wang, Z.J. Fu, S.L. Yan, Y.G. Wang, Serum 25-hydroxyvitamin D levels and peripheral neuropathy in patients with type 2 diabetes: a systematic review and meta-analysis. J. Endocrinol. Invest. 38(5), 513–518 (2015). https://doi.org/10.1007/s40618-014-0210-6
    Article CAS PubMed Google Scholar
  130. T. Yu, L. Li, Y. Bi, Z. Liu, H. Liu, Z. Li, Erythropoietin attenuates oxidative stress and apoptosis in Schwann cells isolated from streptozotocin-induced diabetic rats. J. Pharm. Pharmacol. 66(8), 1150–1160 (2014). https://doi.org/10.1111/jphp.12244
    Article CAS PubMed Google Scholar

Download references