Non-glucose risk factors in the pathogenesis of diabetic peripheral neuropathy (original) (raw)
References
K.A. Head, Peripheral neuropathy: pathogenic mechanisms and alternative therapies. Altern. Med. Rev. 11(4), 294–329 (2006) PubMed Google Scholar
J.B. Buse, D.J. Wexler, A. Tsapas, P. Rossing, G. Mingrone, C. Mathieu, D.A. D’Alessio, M.J. Davies, 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the study of diabetes (EASD). Diabetes. Care. 43(2), 487–493 (2020). https://doi.org/10.2337/dci19-0066 ArticleCASPubMed Google Scholar
M.K. Kim, S.H. Ko, B.Y. Kim, E.S. Kang, J. Noh, S.K. Kim, S.O. Park, K.Y. Hur, S. Chon, M.K. Moon, N.H. Kim, S.Y. Kim, S.Y. Rhee, K.W. Lee, J.H. Kim, E.J. Rhee, S. Chun, S.H. Yu, D.J. Kim, H.S. Kwon, K.S. Park; Committee of Clinical Practice Guidelines, K.D.A., 2019 clinical practice guidelines for type 2 diabetes mellitus in Korea. Diabetes Metab J. 43(4), 398–406 (2019). https://doi.org/10.4093/dmj.2019.0137 ArticlePubMedPubMed Central Google Scholar
C. Diabetes; Complications Trial Research, G., D.M. Nathan, S. Genuth, J. Lachin, P. Cleary, O. Crofford, M. Davis, L. Rand, C. Siebert, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329(14), 977–986 (1993). https://doi.org/10.1056/NEJM199309303291401 Article Google Scholar
D.M. Nathan, P.A. Cleary, J.Y. Backlund, S.M. Genuth, J.M. Lachin, T.J. Orchard, P. Raskin, B. Zinman, C. Diabetes, Complications Trial/Epidemiology of Diabetes, I., Complications Study Research, G.: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353(25), 2643–2653 (2005). https://doi.org/10.1056/NEJMoa052187 ArticlePubMed Google Scholar
F. Garcia Soriano, L. Virag, P. Jagtap, E. Szabo, J.G. Mabley, L. Liaudet, A. Marton, D.G. Hoyt, K.G. Murthy, A.L. Salzman, G.J. Southan, C. Szabo, Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat. Med. 7(1), 108–113 (2001). https://doi.org/10.1038/83241 ArticleCASPubMed Google Scholar
R.J. Heine, B. Balkau, A. Ceriello, S. Del Prato, E.S. Horton, M.R. Taskinen, What does postprandial hyperglycaemia mean? Diabet. Med. 21(3), 208–213 (2004) ArticleCAS Google Scholar
A.E. Caballero, S. Arora, R. Saouaf, S.C. Lim, P. Smakowski, J.Y. Park, G.L. King, F.W. LoGerfo, E.S. Horton, A. Veves, Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 48(9), 1856–1862 (1999) ArticleCAS Google Scholar
S. Thrainsdottir, R.A. Malik, L.B. Dahlin, P. Wiksell, K.F. Eriksson, I. Rosen, J. Petersson, D.A. Greene, G. Sundkvist, Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes 52(10), 2615–2622 (2003) ArticleCAS Google Scholar
S. Tesfaye, N. Chaturvedi, S.E. Eaton, J.D. Ward, C. Manes, C. Ionescu-Tirgoviste, D.R. Witte, J.H. Fuller, E.P.C.S. Group, Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 352(4), 341–350 (2005). https://doi.org/10.1056/NEJMoa032782 ArticleCASPubMed Google Scholar
R.M. Herman, J.B. Brower, D.G. Stoddard, A.R. Casano, J.H. Targovnik, J.H. Herman, P. Tearse, Prevalence of somatic small fiber neuropathy in obesity. Int. J. Obes. (Lond) 31(2), 226–235 (2007). https://doi.org/10.1038/sj.ijo.0803418 ArticleCAS Google Scholar
C.L. Martin, J.W. Albers, R. Pop-Busui, D.E.R. Group, Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 37(1), 31–38 (2014). https://doi.org/10.2337/dc13-2114 ArticleCASPubMed Google Scholar
G. Conti, E. Scarpini, P. Baron, S. Livraghi, M. Tiriticco, R. Bianchi, C. Vedeler, G. Scarlato, Macrophage infiltration and death in the nerve during the early phases of experimental diabetic neuropathy: a process concomitant with endoneurial induction of IL-1beta and p75NTR. J. Neurol. Sci. 195(1), 35–40 (2002) ArticleCAS Google Scholar
E.P. Davidson, L.J. Coppey, A. Holmes, S. Lupachyk, B.L. Dake, C.L. Oltman, R.G. Peterson, M.A. Yorek, Characterization of diabetic neuropathy in the Zucker diabetic Sprague-Dawley rat: a new animal model for type 2 diabetes. J. Diabetes. Res. 2014, 714273 (2014). https://doi.org/10.1155/2014/714273 ArticleCASPubMedPubMed Central Google Scholar
A. Holmes, L.J. Coppey, E.P. Davidson, M.A. Yorek, Rat models of diet-induced obesity and high fat/low dose streptozotocin type 2 diabetes: effect of reversal of high fat diet compared to treatment with enalapril or menhaden oil on glucose utilization and neuropathic endpoints. J. Diabetes Res. 2015, 307285 (2015). https://doi.org/10.1155/2015/307285 ArticleCASPubMedPubMed Central Google Scholar
J.C. Ansquer, C. Foucher, P. Aubonnet, K. Le Malicot, Fibrates and microvascular complications in diabetes-insight from the FIELD study. Curr. Pharm. Des. 15(5), 537–552 (2009) ArticleCAS Google Scholar
A. Othman, R. Bianchi, I. Alecu, Y. Wei, C. Porretta-Serapiglia, R. Lombardi, A. Chiorazzi, C. Meregalli, N. Oggioni, G. Cavaletti, G. Lauria, A. von Eckardstein, T. Hornemann, Lowering plasma 1-deoxysphingolipids improves neuropathy in diabetic rats. Diabetes. 64(3), 1035–1045 (2015). https://doi.org/10.2337/db14-1325 ArticleCASPubMed Google Scholar
A. Othman, R. Benghozi, I. Alecu, Y. Wei, E. Niesor, A. von Eckardstein, T. Hornemann, Fenofibrate lowers atypical sphingolipids in plasma of dyslipidemic patients: A novel approach for treating diabetic neuropathy? J. Clin. Lipidol. 9(4), 568–575 (2015). https://doi.org/10.1016/j.jacl.2015.03.011 ArticlePubMed Google Scholar
N.J. Stone, J.G. Robinson, A.H. Lichtenstein, C.N. Bairey Merz, C.B. Blum, R.H. Eckel, A.C. Goldberg, D. Gordon, D. Levy, D.M. Lloyd-Jones, P. McBride, J.S. Schwartz, S.T. Shero, S.C. Smith Jr, K. Watson, P.W. Wilson; American College of Cardiology/American Heart Association Task Force on Practice, G., 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63(25 Pt B), 2889–2934 (2014). https://doi.org/10.1016/j.jacc.2013.11.002 ArticlePubMed Google Scholar
E.J. Stevens, A.L. Carrington, D.R. Tomlinson, Nerve ischaemia in diabetic rats: time-course of development, effect of insulin treatment plus comparison of streptozotocin and BB models. Diabetologia. 37(1), 43–48 (1994) ArticleCAS Google Scholar
J.A. Gregory, C.G. Jolivalt, J. Goor, A.P. Mizisin, N.A. Calcutt, Hypertension-induced peripheral neuropathy and the combined effects of hypertension and diabetes on nerve structure and function in rats. Acta Neuropathol. 124(4), 561–573 (2012). https://doi.org/10.1007/s00401-012-1012-6 ArticlePubMed Google Scholar
A. De Visser, A. Hemming, C. Yang, S. Zaver, R. Dhaliwal, Z. Jawed, C. Toth, The adjuvant effect of hypertension upon diabetic peripheral neuropathy in experimental type 2 diabetes. Neurobiol Dis. 62, 18–30 (2014). https://doi.org/10.1016/j.nbd.2013.07.019 ArticleCASPubMed Google Scholar
H. Takata, Y. Takeda, A. Zhu, Y. Cheng, T. Yoneda, M. Demura, K. Yagi, S. Karashima, M. Yamagishi, Protective effects of mineralocorticoid receptor blockade against neuropathy in experimental diabetic rats. Diabetes Obes. Metab. 14(2), 155–162 (2012). https://doi.org/10.1111/j.1463-1326.2011.01499.x ArticleCASPubMed Google Scholar
J.W. Mold, S.K. Vesely, B.A. Keyl, J.B. Schenk, M. Roberts, The prevalence, predictors, and consequences of peripheral sensory neuropathy in older patients. J. Am. Board Fam. Pract. 17(5), 309–318 (2004) Article Google Scholar
D.Y. Cho, J.W. Mold, M. Roberts, Further investigation of the negative association between hypertension and peripheral neuropathy in the elderly: an Oklahoma Physicians Resource/Research Network (OKPRN) Study. J. Am. Board Fam. Med. 19(3), 240–250 (2006) Article Google Scholar
R.E. Schmidt, D.A. Dorsey, L.N. Beaudet, K.E. Frederick, C.A. Parvin, S.B. Plurad, M.G. Levisetti, Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy. Am. J. Pathol. 163(5), 2077–2091 (2003). https://doi.org/10.1016/S0002-9440(10)63565-1 ArticlePubMedPubMed Central Google Scholar
K.C. Tomlinson, S.M. Gardiner, T. Bennett, Blood pressure in streptozotocin-treated Brattleboro and Long-Evans rats. Am. J. Physiol. 258(4 Pt 2), R852–R859 (1990) CASPubMed Google Scholar
K.Y. Forrest, R.E. Maser, G. Pambianco, D.J. Becker, T.J. Orchard, Hypertension as a risk factor for diabetic neuropathy: a prospective study. Diabetes. 46(4), 665–670 (1997) ArticleCAS Google Scholar
S.M. Manschot, W.H. Gispen, L.J. Kappelle, G.J. Biessels, Nerve conduction velocity and evoked potential latencies in streptozotocin-diabetic rats: effects of treatment with an angiotensin converting enzyme inhibitor. Diabet. Metab. Res. Rev. 19(6), 469–477 (2003). https://doi.org/10.1002/dmrr.401 ArticleCAS Google Scholar
T. Cavusoglu, T. Karadeniz, E. Cagiltay, M. Karadeniz, G. Yigitturk, E. Acikgoz, Y. Uyanikgil, U. Ates, M.I. Tuglu, O. Erbas, The protective effect of losartan on diabetic neuropathy in a diabetic rat model. Exp clin endocrinol diabetes 123(8), 479–484 (2015). https://doi.org/10.1055/s-0035-1550019 ArticleCASPubMed Google Scholar
E.K. Maxfield, N.E. Cameron, M.A. Cotter, K.C. Dines, Angiotensin II receptor blockade improves nerve function, modulates nerve blood flow and stimulates endoneurial angiogenesis in streptozotocin-diabetic rats and nerve function. Diabetologia. 36(12), 1230–1237 (1993) ArticleCAS Google Scholar
A. Reja, S. Tesfaye, N.D. Harris, J.D. Ward, Is ACE inhibition with lisinopril helpful in diabetic neuropathy? Diabet. Med. 12(4), 307–309 (1995) ArticleCAS Google Scholar
R.A. Malik, S. Williamson, C. Abbott, A.L. Carrington, J. Iqbal, W. Schady, A.J. Boulton, Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomised double-blind controlled trial. Lancet. 352(9145), 1978–1981 (1998). https://doi.org/10.1016/S0140-6736(98)02478-7 ArticleCASPubMed Google Scholar
J. Elliott, S. Tesfaye, N. Chaturvedi, R.A. Gandhi, L.K. Stevens, C. Emery, J.H. Fuller, E.P.C.S. Group, Large-fiber dysfunction in diabetic peripheral neuropathy is predicted by cardiovascular risk factors. Diabetes Care. 32(10), 1896–1900 (2009). https://doi.org/10.2337/dc09-0554 ArticleCASPubMedPubMed Central Google Scholar
P. Luciani, C. Deledda, S. Benvenuti, I. Cellai, R. Squecco, M. Monici, F. Cialdai, G. Luciani, G. Danza, C. Di Stefano, F. Francini, A. Peri, Differentiating effects of the glucagon-like peptide-1 analogue exendin-4 in a human neuronal cell model. Cell Mol. Life Sci. 67(21), 3711–3723 (2010). https://doi.org/10.1007/s00018-010-0398-3 ArticleCASPubMed Google Scholar
P. Anagnostis, V.G. Athyros, F. Adamidou, A. Panagiotou, M. Kita, A. Karagiannis, D.P. Mikhailidis, Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabet. Obes. Metab. 13(4), 302–312 (2011). https://doi.org/10.1111/j.1463-1326.2010.01345.x ArticleCAS Google Scholar
T. Perry, D.K. Lahiri, D. Chen, J. Zhou, K.T. Shaw, J.M. Egan, N.H. Greig, A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J. Pharmacol. Exp. Ther. 300(3), 958–966 (2002) ArticleCAS Google Scholar
M.J. During, L. Cao, D.S. Zuzga, J.S. Francis, H.L. Fitzsimons, X. Jiao, R.J. Bland, M. Klugmann, W.A. Banks, D.J. Drucker, C.N. Haile, Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 9(9), 1173–1179 (2003). https://doi.org/10.1038/nm919 ArticleCASPubMed Google Scholar
M. Tsukamoto, N. Niimi, K. Sango, S. Takaku, Y. Kanazawa, K. Utsunomiya, Neurotrophic and neuroprotective properties of exendin-4 in adult rat dorsal root ganglion neurons: involvement of insulin and RhoA. Histochem. Cell Biol. 144(3), 249–259 (2015). https://doi.org/10.1007/s00418-015-1333-3 ArticleCASPubMed Google Scholar
T. Himeno, H. Kamiya, K. Naruse, N. Harada, N. Ozaki, Y. Seino, T. Shibata, M. Kondo, J. Kato, T. Okawa, A. Fukami, Y. Hamada, N. Inagaki, Y. Seino, D.J. Drucker, Y. Oiso, J. Nakamura, Beneficial effects of exendin-4 on experimental polyneuropathy in diabetic mice. Diabetes. 60(9), 2397–2406 (2011). https://doi.org/10.2337/db10-1462 ArticleCASPubMedPubMed Central Google Scholar
R. Bianchi, I. Cervellini, C. Porretta-Serapiglia, N. Oggioni, B. Burkey, P. Ghezzi, G. Cavaletti, G. Lauria, Beneficial effects of PKF275-055, a novel, selective, orally bioavailable, long-acting dipeptidyl peptidase IV inhibitor in streptozotocin-induced diabetic peripheral neuropathy. J. Pharmacol. Exp. Ther. 340(1), 64–72 (2012). https://doi.org/10.1124/jpet.111.181529 ArticleCASPubMed Google Scholar
M. Jaiswal, C.L. Martin, M.B. Brown, B. Callaghan, J.W. Albers, E.L. Feldman, R. Pop-Busui. Effects of exenatide on measures of diabetic neuropathy in subjects with type 2 diabetes: results from an 18-month proof-of-concept open-label randomized study. J. Diabet. Compl. (2015). https://doi.org/10.1016/j.jdiacomp.2015.07.013
M. Dobretsov, D. Romanovsky, J.R. Stimers, Early diabetic neuropathy: triggers and mechanisms. World J. Gastroenterol. 13(2), 175–191 (2007) ArticleCAS Google Scholar
C.R. Pierson, W. Zhang, Y. Murakawa, A.A. Sima, Insulin deficiency rather than hyperglycemia accounts for impaired neurotrophic responses and nerve fiber regeneration in type 1 diabetic neuropathy. J. Neuropathol. Exp. Neurol. 62(3), 260–271 (2003) ArticleCAS Google Scholar
K. Sugimoto, Y. Murakawa, W. Zhang, G. Xu, A.A. Sima, Insulin receptor in rat peripheral nerve: its localization and alternatively spliced isoforms. Diabetes Metab. Res. Rev. 16(5), 354–363 (2000) ArticleCAS Google Scholar
K. Sugimoto, Y. Murakawa, A.A. Sima, Expression and localization of insulin receptor in rat dorsal root ganglion and spinal cord. J. Peripher. Nerv. Syst. 7(1), 44–53 (2002) ArticleCAS Google Scholar
X.H. Bao, V. Wong, Q. Wang, L.C. Low, Prevalence of peripheral neuropathy with insulin-dependent diabetes mellitus. Pediatr. Neurol. 20(3), 204–209 (1999) ArticleCAS Google Scholar
S.H. Kim, C.O. Baek, K.A. Lee, T.S. Park, H.S. Baek, H.Y. Jin, Clinical implication of elevated CA 19-9 level and the relationship with glucose control state in patients with type 2 diabetes. Endocrine. 46(2), 249–255 (2014). https://doi.org/10.1007/s12020-013-0058-0 ArticleCASPubMed Google Scholar
D.F. Steiner, Evidence for a precursor in the biosynthesis of insulin. Trans. N Y Acad. Sci. 30(1), 60–68 (1967) ArticleCAS Google Scholar
K. Ekberg, T. Brismar, B.L. Johansson, B. Jonsson, P. Lindstrom, J. Wahren, Amelioration of sensory nerve dysfunction by C-Peptide in patients with type 1 diabetes. Diabetes. 52(2), 536–541 (2003) ArticleCAS Google Scholar
T. Forst, T. Kunt, T. Pohlmann, K. Goitom, M. Engelbach, J. Beyer, A. Pfutzner, Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. J. Clin. Invest. 101(10), 2036–2041 (1998). https://doi.org/10.1172/JCI2147 ArticleCASPubMedPubMed Central Google Scholar
A.O. Shpakov, O.K. Granstrem, [C-peptide physiological effects]. Ross Fiziol Zh Im I M Sechenova. 99(2), 196–211 (2013) CASPubMed Google Scholar
D.R. Tomlinson, P. Fernyhough, L.T. Diemel, Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes. 46(Suppl 2), S43–S49 (1997) ArticleCAS Google Scholar
R. Levi-Montalcini, P.U. Angeletti, Essential role of the nerve growth factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Dev. Biol. 6, 653–659 (1963) ArticleCAS Google Scholar
L. Li, T. Yu, L. Yu, H. Li, Y. Liu, D. Wang. Exogenous brain-derived neurotrophic factor relieves pain symptoms of diabetic rats by reducing excitability of dorsal root ganglion neurons. Int. J. Neurosci. 1–10 (2015). https://doi.org/10.3109/00207454.2015.1057725
S.R. Chowdhury, A. Saleh, E. Akude, D.R. Smith, D. Morrow, L. Tessler, N.A. Calcutt, P. Fernyhough, Ciliary neurotrophic factor reverses aberrant mitochondrial bioenergetics through the JAK/STAT pathway in cultured sensory neurons derived from streptozotocin-induced diabetic rodents. Cell Mol. Neurobiol. 34(5), 643–649 (2014). https://doi.org/10.1007/s10571-014-0054-9 ArticleCASPubMed Google Scholar
A. Saleh, Roy Chowdhury, S.K. Smith, D.R. Balakrishnan, S. Tessler, L. Martens, C. Morrow, D. Schartner, E. Frizzi, K.E. Calcutt, N.A. Fernyhough, P.: Ciliary neurotrophic factor activates NF-kappaB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology. 65, 65–73 (2013). https://doi.org/10.1016/j.neuropharm.2012.09.015 ArticleCASPubMed Google Scholar
Z. Dang, D. Maselli, G. Spinetti, E. Sangalli, F. Carnelli, F. Rosa, E. Seganfreddo, F. Canal, A. Furlan, A. Paccagnella, E. Paiola, B. Lorusso, C. Specchia, M. Albiero, R. Cappellari, A. Avogaro, A. Falco, F. Quaini, K. Ou, I. Rodriguez-Arabaolaza, C. Emanueli, M. Sambataro, G.P. Fadini, P. Madeddu, Sensory neuropathy hampers nociception-mediated bone marrow stem cell release in mice and patients with diabetes. Diabetologia. 58(11), 2653–2662 (2015). https://doi.org/10.1007/s00125-015-3735-0 ArticleCASPubMedPubMed Central Google Scholar
J.M. Dominguez 2nd, M.A. Yorek, M.B. Grant, Combination therapies prevent the neuropathic, proinflammatory characteristics of bone marrow in streptozotocin-induced diabetic rats. Diabetes. 64(2), 643–653 (2015). https://doi.org/10.2337/db14-0433 ArticleCASPubMed Google Scholar
S. Takaku, H. Yanagisawa, K. Watabe, H. Horie, T. Kadoya, K. Sakumi, Y. Nakabeppu, F. Poirier, K. Sango, GDNF promotes neurite outgrowth and upregulates galectin-1 through the RET/PI3K signaling in cultured adult rat dorsal root ganglion neurons. Neurochem. Int. 62(3), 330–339 (2013). https://doi.org/10.1016/j.neuint.2013.01.008 ArticleCASPubMed Google Scholar
Y. Li, N. Tong. Angiotensin-converting enzyme I/D polymorphism and diabetic peripheral neuropathy in type 2 diabetes mellitus: A meta-analysis. J. Renin. Angiotensin. Aldosterone. Syst. (2014). https://doi.org/10.1177/1470320314539828
W.S. Lv, W.J. Zhao, S.L. Gong, D.D. Fang, B. Wang, Z.J. Fu, S.L. Yan, Y.G. Wang, Serum 25-hydroxyvitamin D levels and peripheral neuropathy in patients with type 2 diabetes: a systematic review and meta-analysis. J. Endocrinol. Invest. 38(5), 513–518 (2015). https://doi.org/10.1007/s40618-014-0210-6 ArticleCASPubMed Google Scholar
T. Yu, L. Li, Y. Bi, Z. Liu, H. Liu, Z. Li, Erythropoietin attenuates oxidative stress and apoptosis in Schwann cells isolated from streptozotocin-induced diabetic rats. J. Pharm. Pharmacol. 66(8), 1150–1160 (2014). https://doi.org/10.1111/jphp.12244 ArticleCASPubMed Google Scholar