Brain Insulin Dysregulation: Implication for Neurological and Neuropsychiatric Disorders (original) (raw)
Chowers I, Lavy S, Halpern L (1961) Effect of insulin administered intracisternally in dogs on the glucose level of the blood and the cerebrospinal fluid. Exp Neurol 3(2):197–205 ArticleCAS Google Scholar
Chowers I, Lavy S, Halpern L (1966) Effect of insulin administered intracisternally on the glucose level of the blood and the cerebrospinal fluid in vagotomized dogs. Exp Neurol 14(3):383–389 ArticlePubMedCAS Google Scholar
Havrankova J, Schmechel D, Roth J, Brownstein M (1978) Identification of insulin in rat brain. Proc Natl Acad Sci U S A 75(11):5737–5741 ArticlePubMedCAS Google Scholar
Havrankova J, Roth J, Brownstein MJ (1979) Concentrations of insulin and insulin receptors in the brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated rodents. J Clin Invest 64(2):636–642. doi:10.1172/JCI109504 ArticlePubMedCAS Google Scholar
Banks WA, Jaspan JB, Huang W, Kastin AJ (1997) Transport of insulin across the blood–brain barrier: saturability at euglycemic doses of insulin. Peptides 18(9):1423–1429 ArticlePubMedCAS Google Scholar
Banks WA, Kastin AJ (1998) Differential permeability of the blood–brain barrier to two pancreatic peptides: insulin and amylin. Peptides 19(5):883–889 ArticlePubMedCAS Google Scholar
Baura G, Foster D, Kaiyala K, Porte D, Kahn S, Schwartz M (1996) Insulin transport from plasma into the central nervous system is inhibited by dexamethasone in dogs. Diabetes 45(1):86 ArticlePubMedCAS Google Scholar
Strubbe J, Porte D Jr, Woods S (1988) Insulin responses and glucose levels in plasma and cerebrospinal fluid during fasting and refeeding in the rat. Physiol Behav 44(2):205–208 ArticlePubMedCAS Google Scholar
Florant G, Richardson R, Mahan S, Singer L, Woods S (1991) Seasonal changes in CSF insulin levels in marmots: insulin may not be a satiety signal for fasting in winter. Am J Physiol Regul Integr Comp Physiol 260(4):R712 CAS Google Scholar
Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW (2000) Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes 49(9):1525 ArticlePubMedCAS Google Scholar
Dorn A, Bernstein HG, Rinne A, Ziegler M, Hahn HJ, Ansorge S (1983) Insulin and glucagonlike peptides in the brain. Anat Rec 207(1):69–77 ArticlePubMedCAS Google Scholar
Birch NP, Christie DL, Renwick AGC (1984) Proinsulin-like material in mouse foetal brain cell cultures. FEBS Lett 168(2):299–302 ArticlePubMedCAS Google Scholar
Frölich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Türk A, Hoyer S (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105(4):423–438 ArticlePubMed Google Scholar
Devaskar SU, Singh BS, Carnaghi LR, Rajakumar PA, Giddings SJ (1993) Insulin II gene expression in rat central nervous system. Regul Pept 48(1–2):55–63 ArticlePubMedCAS Google Scholar
Young WS III (1986) Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 8(2):93–97 ArticlePubMedCAS Google Scholar
Schechter R, Whitmire J, Wheet GS, Beju D, Jackson KW, Harlow R, Gavin JR III (1994) Immunohistochemical and in situ hybridization study of an insulin-like substance in fetal neuron cell cultures. Brain Res 636(1):9–27 ArticlePubMedCAS Google Scholar
Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272(5656):827–829 ArticlePubMedCAS Google Scholar
Hill J, Lesniak M, Pert C, Roth J (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17(4):1127–1138 ArticlePubMedCAS Google Scholar
Schulingkamp R, Pagano T, Hung D, Raffa R (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24(8):855–872 ArticlePubMedCAS Google Scholar
LeRoith D, Lowe WL Jr, Shemer J, Raizada MK, Ota A (1988) Development of brain insulin receptors. Int J Biochem 20(3):225–230 ArticlePubMedCAS Google Scholar
Zahniser NR, Goens MB, Hanaway PJ, Vinych JV (1984) Characterization and regulation of insulin receptors in rat brain. J Neurochem 42(5):1354–1362 ArticlePubMedCAS Google Scholar
Heidenreich KA, Zahniser NR, Berhanu P, Brandenburg D, Olefsky JM (1983) Structural differences between insulin receptors in the brain and peripheral target tissues. J Biol Chem 258(14):8527 PubMedCAS Google Scholar
Yip CC, Moule ML, Yeung CWT (1980) Characterization of insulin receptor subunits in brain and other tissues by photoaffinity labeling. Biochem Biophys Res Commun 96(4):1671–1678 ArticlePubMedCAS Google Scholar
Shen L, Wang DQH, Tso P, Jandacek RJ, Woods SC, Liu M (2011) Apolipoprotein E reduces food intake via PI3K/Akt signaling pathway in the hypothalamus. Physiol Behav
Gerozissis K (2008) Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur J Pharmacol 585(1):38–49 ArticlePubMedCAS Google Scholar
Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA (2004) Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav 83(1):47–54 PubMedCAS Google Scholar
Fernandez-Fernandez R, Martini A, Navarro V, Castellano J, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2006) Novel signals for the integration of energy balance and reproduction. Mol Cell Endocrinol 254:127–132 ArticlePubMedCAS Google Scholar
Crown A, Clifton DK, Steiner RA (2007) Neuropeptide signaling in the integration of metabolism and reproduction. Neuroendocrinology 86(3):175–182 ArticlePubMedCAS Google Scholar
Arias P, Rodriguez M, Szwarcfarb B, Sinay I, Moguilevsky J (1992) Effect of insulin on LHRH release by perifused hypothalamic fragments. Neuroendocrinology 56(3):415–418 ArticlePubMedCAS Google Scholar
Miller D, Blache D, Martin G (1995) The role of intracerebral insulin in the effect of nutrition on gonadotrophin secretion in mature male sheep. J Endocrinol 147(2):321 ArticlePubMedCAS Google Scholar
Reaven G, Thompson L, Nahum D, Haskins E (1990) Relationship between hyperglycemia and cognitive function in older NIDDM patients. Diabetes Care 13(1):16 ArticlePubMedCAS Google Scholar
Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29(10):1326–1334 ArticlePubMedCAS Google Scholar
Babri S, Badie HG, Khamenei S, Ordikhani-Seyedlar M (2007) Intrahippocampal insulin improves memory in a passive-avoidance task in male wistar rats. Brain Cogn 64(1):86–91 ArticlePubMed Google Scholar
Haj-ali V, Mohaddes G, Babri S (2009) Intracerebroventricular insulin improves spatial learning and memory in male Wistar rats. Behav Neurosci 123(6):1309 ArticlePubMedCAS Google Scholar
Park CR, Seeley RJ, Craft S, Woods SC (2000) Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 68(4):509–514 ArticlePubMedCAS Google Scholar
Palovcik RA, Phillips MI, Kappy MS, Raizada MK (1984) Insulin inhibits pyramidal neurons in hippocampal slices. Brain Res 309(1):187–191 ArticlePubMedCAS Google Scholar
Wan Q, Xiong ZG, Man HY, Ackerley CA, Braunton J, Lu WY, Becker LE, MacDonald JF, Wang YT (1997) Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388(6643):686–690. doi:10.1038/41792 ArticlePubMedCAS Google Scholar
Lozovsky DB, Kopin IJ, Saller CF (1985) Modulation of dopamine receptor supersensitivity by chronic insulin: implication in schizophrenia. Brain Res 343(1):190–193 ArticlePubMedCAS Google Scholar
Fadool D, Tucker K, Phillips J, Simmen J (2000) Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1. 3. J Neurophysiol 83(4):2332 PubMedCAS Google Scholar
Farrar C, Houser CR, Clarke S (2005) Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice. Aging Cell 4(1):1–12. doi:10.1111/j.1474-9728.2004.00136.x ArticlePubMedCAS Google Scholar
Schubert M, Brazil D, Burks D, Kushner J, Ye J, Flint C, Farhang-Fallah J, Dikkes P, Warot X, Rio C (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci Off J Soc Neurosci 23(18):7084 CAS Google Scholar
Duarte AI, Santos MS, Oliveira CR, Rego AC (2005) Insulin neuroprotection against oxidative stress in cortical neurons—involvement of uric acid and glutathione antioxidant defenses. Free Radic Biol Med 39(7):876–889 ArticlePubMedCAS Google Scholar
Rensink AA, Otte-Holler I, de Boer R, Bosch RR, ten Donkelaar HJ, de Waal RM, Verbeek MM, Kremer B (2004) Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes. Neurobiol Aging 25(1):93–103 ArticlePubMedCAS Google Scholar
Kuusisto J, Koivisto K, Mykkanen L, Helkala EL, Vanhanen M, Hanninen T, Kervinen K, Kesaniemi YA, Riekkinen PJ, Laakso M (1997) Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. BMJ 315(7115):1045–1049 ArticlePubMedCAS Google Scholar
Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53(9):1937–1942 ArticlePubMedCAS Google Scholar
Schrijvers EM, Witteman JC, Sijbrands EJ, Hofman A, Koudstaal PJ, Breteler MM (2010) Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study. Neurology 75(22):1982–1987. doi:10.1212/WNL.0b013e3181ffe4f6 ArticlePubMedCAS Google Scholar
Akomolafe A, Beiser A, Meigs JB, Au R, Green RC, Farrer LA, Wolf PA, Seshadri S (2006) Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study. Arch Neurol 63(11):1551–1555. doi:10.1001/archneur.63.11.1551 ArticlePubMed Google Scholar
Xu W, Qiu C, Winblad B, Fratiglioni L (2007) The effect of borderline diabetes on the risk of dementia and Alzheimer’s disease. Diabetes 56(1):211–216. doi:10.2337/db06-0879 ArticlePubMedCAS Google Scholar
Matsuzaki T, Sasaki K, Tanizaki Y, Hata J, Fujimi K, Matsui Y, Sekita A, Suzuki SO, Kanba S, Kiyohara Y, Iwaki T (2010) Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology 75(9):764–770. doi:10.1212/WNL.0b013e3181eee25f ArticlePubMedCAS Google Scholar
MacKnight C, Rockwood K, Awalt E, McDowell I (2002) Diabetes mellitus and the risk of dementia, Alzheimer’s disease and vascular cognitive impairment in the Canadian Study of Health and Aging. Dement Geriatr Cogn Disord 14(2):77–83 ArticlePubMed Google Scholar
Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L (2004) Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology 63(7):1181–1186 ArticlePubMedCAS Google Scholar
Hassing LB, Johansson B, Nilsson SE, Berg S, Pedersen NL, Gatz M, McClearn G (2002) Diabetes mellitus is a risk factor for vascular dementia, but not for Alzheimer’s disease: a population-based study of the oldest old. Int Psychogeriatr 14(3):239–248 ArticlePubMed Google Scholar
Nielson KA, Nolan JH, Berchtold NC, Sandman CA, Mulnard RA, Cotman CW (1996) Apolipoprotein-E genotyping of diabetic dementia patients: is diabetes rare in Alzheimer’s disease? J Am Geriatr Soc 44(8):897–904 PubMedCAS Google Scholar
Arvanitakis Z, Schneider JA, Wilson RS, Li Y, Arnold SE, Wang Z, Bennett DA (2006) Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology 67(11):1960–1965. doi:10.1212/01.wnl.0000247053.45483.4e ArticlePubMedCAS Google Scholar
Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr (1998) Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 50(1):164 ArticlePubMedCAS Google Scholar
Gil-Bea FJ, Solas M, Solomon A, Mugueta C, Winblad B, Kivipelto M, Ramirez MJ, Cedazo-Minguez A (2010) Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimer’s disease. J Alzheimers Dis 22(2):405–413. doi:10.3233/JAD-2010-100795 PubMedCAS Google Scholar
Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, Kurinami H, Shinohara M, Rakugi H, Morishita R (2010) Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci U S A 107(15):7036–7041. doi:10.1073/pnas.1000645107 ArticlePubMedCAS Google Scholar
Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113(11):1685–1695. doi:10.1007/s00702-006-0575-6 ArticlePubMedCAS Google Scholar
Fukao T, Tanabe M, Terauchi Y, Ota T, Matsuda S, Asano T, Kadowaki T, Takeuchi T, Koyasu S (2002) PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat Immunol 3(9):875–881. doi:10.1038/ni825 ArticlePubMedCAS Google Scholar
Avila J, Wandosell F, Hernandez F (2010) Role of glycogen synthase kinase-3 in Alzheimer’s disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Rev Neurother 10(5):703–710. doi:10.1586/ern.10.40 ArticlePubMedCAS Google Scholar
Balaraman Y, Limaye AR, Levey AI, Srinivasan S (2006) Glycogen synthase kinase 3beta and Alzheimer’s disease: pathophysiological and therapeutic significance. Cell Mol Life Sci 63(11):1226–1235. doi:10.1007/s00018-005-5597-y ArticlePubMedCAS Google Scholar
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789. doi:10.1038/378785a0 ArticlePubMedCAS Google Scholar
Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6(8):777–784. doi:10.1038/ni1221 ArticlePubMedCAS Google Scholar
Hu X, Paik PK, Chen J, Yarilina A, Kockeritz L, Lu TT, Woodgett JR, Ivashkiv LB (2006) IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24(5):563–574. doi:10.1016/j.immuni.2006.02.014 ArticlePubMedCAS Google Scholar
Saberi M, Woods NB, de Luca C, Schenk S, Lu JC, Bandyopadhyay G, Verma IM, Olefsky JM (2009) Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab 10(5):419–429. doi:10.1016/j.cmet.2009.09.006 ArticlePubMedCAS Google Scholar
Lee YS, Li P, Huh JY, Hwang IJ, Lu M, Kim JI, Ham M, Talukdar S, Chen A, Lu WJ, Bandyopadhyay GK, Schwendener R, Olefsky J, Kim JB (2011) Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 60(10):2474–2483. doi:10.2337/db11-0194 ArticlePubMedCAS Google Scholar
Hotamisligil GS, Budavari A, Murray D, Spiegelman BM (1994) Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 94(4):1543–1549. doi:10.1172/jci117495 ArticlePubMedCAS Google Scholar
Tu YF, Tsai YS, Wang LW, Wu HC, Huang CC, Ho CJ (2011) Overweight worsens apoptosis, neuroinflammation and blood–brain barrier damage after hypoxic ischemia in neonatal brain through JNK hyperactivation. J Neuroinflammation 8:40. doi:10.1186/1742-2094-8-40 ArticlePubMedCAS Google Scholar
Sartorius T, Lutz SZ, Hoene M, Waak J, Peter A, Weigert C, Rammensee HG, Kahle PJ, Haring HU, Hennige AM (2012) Toll-like receptors 2 and 4 impair insulin-mediated brain activity by interleukin-6 and osteopontin and alter sleep architecture. FASEB J 26(5):1799–1809. doi:10.1096/fj.11-191023 ArticlePubMedCAS Google Scholar
Arruda AP, Milanski M, Coope A, Torsoni AS, Ropelle E, Carvalho DP, Carvalheira JB, Velloso LA (2011) Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology 152(4):1314–1326. doi:10.1210/en.2010-0659 ArticlePubMedCAS Google Scholar
Frolich L, Blum-Degen D, Riederer P, Hoyer S (1999) A disturbance in the neuronal insulin receptor signal transduction in sporadic Alzheimer’s disease. Ann N Y Acad Sci 893:290–293 ArticlePubMedCAS Google Scholar
Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80 PubMedCAS Google Scholar
Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R (2002) Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 22(10):RC221 PubMed Google Scholar
Lee HK, Kumar P, Fu Q, Rosen KM, Querfurth HW (2009) The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid. Mol Biol Cell 20(5):1533–1544. doi:10.1091/mbc.E08-07-0777 ArticlePubMedCAS Google Scholar
Holscher C (2011) Diabetes as a risk factor for Alzheimer’s disease: insulin signalling impairment in the brain as an alternative model of Alzheimer’s disease. Biochem Soc Trans 39(4):891–897. doi:10.1042/BST0390891 ArticlePubMedCAS Google Scholar
de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes—evidence reviewed. J Diabetes Sci Technol 2(6):1101–1113 PubMed Google Scholar
Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9(1):13–33 PubMedCAS Google Scholar
Hoyer S, Lee SK, Loffler T, Schliebs R (2000) Inhibition of the neuronal insulin receptor. An in vivo model for sporadic Alzheimer disease? Ann N Y Acad Sci 920:256–258 ArticlePubMedCAS Google Scholar
de la Monte SM, Tong M, Lester-Coll N, Plater M Jr, Wands JR (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10(1):89–109 PubMed Google Scholar
Craft S, Asthana S, Cook DG, Baker LD, Cherrier M, Purganan K, Wait C, Petrova A, Latendresse S, Watson GS, Newcomer JW, Schellenberg GD, Krohn AJ (2003) Insulin dose–response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 28(6):809–822 ArticlePubMedCAS Google Scholar
Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, Fishel MA, Kulstad JJ, Green PS, Cook DG, Kahn SE, Keeling ML, Craft S (2005) Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 13(11):950–958. doi:10.1176/appi.ajgp.13.11.950 PubMed Google Scholar
Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, Zvartau-Hind ME, Hosford DA, Roses AD (2006) Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 6(4):246–254. doi:10.1038/sj.tpj.6500369 PubMedCAS Google Scholar
Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR (2006) Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol 199(2):265–273. doi:10.1016/j.expneurol.2006.01.018 ArticlePubMedCAS Google Scholar
Jiang LH, Zhang YN, Wu XW, Song FF, Guo DY (2008) Effect of insulin on the cognizing function and expression of hippocampal Abeta1-40 of rat with Alzheimer disease. Chin Med J (Engl) 121(9):827–831 CAS Google Scholar
Zhao WQ, Townsend M (2009) Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 1792(5):482–496. doi:10.1016/j.bbadis.2008.10.014 ArticlePubMedCAS Google Scholar
O’Brien TD, Butler PC, Westermark P, Johnson KH (1993) Islet amyloid polypeptide: a review of its biology and potential roles in the pathogenesis of diabetes mellitus. Vet Pathol 30(4):317–332 ArticlePubMed Google Scholar
Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48(3):491–498 ArticlePubMedCAS Google Scholar
Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53(2):474–481 ArticlePubMedCAS Google Scholar
Shpund S, Gershon D (1997) Alterations in the chaperone activity of HSP70 in aging organisms. Arch Gerontol Geriatr 24(2):125–131 ArticlePubMedCAS Google Scholar
Blake MJ, Udelsman R, Feulner GJ, Norton DD, Holbrook NJ (1991) Stress-induced heat shock protein 70 expression in adrenal cortex: an adrenocorticotropic hormone-sensitive, age-dependent response. Proc Natl Acad Sci U S A 88(21):9873–9877 ArticlePubMedCAS Google Scholar
Buoso E, Lanni C, Schettini G, Govoni S, Racchi M (2010) beta-Amyloid precursor protein metabolism: focus on the functions and degradation of its intracellular domain. Pharmacol Res 62(4):308–317. doi:10.1016/j.phrs.2010.05.002 ArticlePubMedCAS Google Scholar
Bernstein HG, Ansorge S, Riederer P, Reiser M, Frolich L, Bogerts B (1999) Insulin-degrading enzyme in the Alzheimer’s disease brain: prominent localization in neurons and senile plaques. Neurosci Lett 263(2–3):161–164 ArticlePubMedCAS Google Scholar
Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 273(49):32730–32738 ArticlePubMedCAS Google Scholar
Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, Mobbs CV, Hof PR, Pasinetti GM (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 18(7):902–904. doi:10.1096/fj.03-0978fje PubMedCAS Google Scholar
Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100(7):4162–4167. doi:10.1073/pnas.0230450100 ArticlePubMedCAS Google Scholar
Shiiki T, Ohtsuki S, Kurihara A, Naganuma H, Nishimura K, Tachikawa M, Hosoya K, Terasaki T (2004) Brain insulin impairs amyloid-beta(1–40) clearance from the brain. J Neurosci 24(43):9632–9637. doi:10.1523/JNEUROSCI.2236-04.2004 ArticlePubMedCAS Google Scholar
Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21(8):2561–2570 PubMedCAS Google Scholar
Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM (2004) Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer’s disease intervention. J Neurosci 24(49):11120–11126. doi:10.1523/JNEUROSCI.2860-04.2004 ArticlePubMedCAS Google Scholar
Solano DC, Sironi M, Bonfini C, Solerte SB, Govoni S, Racchi M (2000) Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J 14(7):1015–1022 PubMedCAS Google Scholar
Phiel CJ, Wilson CA, Lee VM, Klein PS (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423(6938):435–439. doi:10.1038/nature01640 ArticlePubMedCAS Google Scholar
Johnson GV (2006) Tau phosphorylation and proteolysis: insights and perspectives. J Alzheimers Dis 9(3 Suppl):243–250 PubMedCAS Google Scholar
Chung CW, Song YH, Kim IK, Yoon WJ, Ryu BR, Jo DG, Woo HN, Kwon YK, Kim HH, Gwag BJ, Mook-Jung IH, Jung YK (2001) Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol Dis 8(1):162–172. doi:10.1006/nbdi.2000.0335 ArticlePubMedCAS Google Scholar
Cotman CW, Poon WW, Rissman RA, Blurton-Jones M (2005) The role of caspase cleavage of tau in Alzheimer disease neuropathology. J Neuropathol Exp Neurol 64(2):104–112 PubMedCAS Google Scholar
Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT, Cotman CW (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114(1):121–130. doi:10.1172/jci20640 PubMedCAS Google Scholar
Kim B, Backus C, Oh S, Hayes JM, Feldman EL (2009) Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150(12):5294–5301. doi:10.1210/en.2009-0695 ArticlePubMedCAS Google Scholar
Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS (2006) Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55(12):3320–3325. doi:10.2337/db06-0485 ArticlePubMedCAS Google Scholar
Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, Yu WH, Luchsinger JA, Wadzinski B, Duff KE, Takashima A (2007) Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 27(50):13635–13648. doi:10.1523/JNEUROSCI.3949-07.2007 ArticlePubMedCAS Google Scholar
Hong M, Lee VM (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272(31):19547–19553 ArticlePubMedCAS Google Scholar
Jolivalt CG, Lee CA, Beiswenger KK, Smith JL, Orlov M, Torrance MA, Masliah E (2008) Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer’s disease and correction by insulin. J Neurosci Res 86(15):3265–3274. doi:10.1002/jnr.21787 ArticlePubMedCAS Google Scholar
Freude S, Plum L, Schnitker J, Leeser U, Udelhoven M, Krone W, Bruning JC, Schubert M (2005) Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes 54(12):3343–3348 ArticlePubMedCAS Google Scholar
Schechter R, Beju D, Miller KE (2005) The effect of insulin deficiency on tau and neurofilament in the insulin knockout mouse. Biochem Biophys Res Commun 334(4):979–986. doi:10.1016/j.bbrc.2005.07.001 ArticlePubMedCAS Google Scholar
Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Kustermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Bruning JC (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A 101(9):3100–3105. doi:10.1073/pnas.0308724101 ArticlePubMedCAS Google Scholar
Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23(18):7084–7092 PubMedCAS Google Scholar
Neumann KF, Rojo L, Navarrete LP, Farias G, Reyes P, Maccioni RB (2008) Insulin resistance and Alzheimer’s disease: molecular links and clinical implications. Curr Alzheimer Res 5(5):438–447 ArticlePubMedCAS Google Scholar
Moreira PI, Santos MS, Seica R, Oliveira CR (2007) Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. J Neurol Sci 257(1–2):206–214. doi:10.1016/j.jns.2007.01.017 ArticlePubMedCAS Google Scholar
de la Monte SM, Wands JR (2006) Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimers Dis 9(2):167–181 PubMed Google Scholar
Coskun P, Wyrembak J, Schriner S, Chen HW, Marciniack C, Laferla F, Wallace DC (2011) A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta. doi:10.1016/j.bbagen.2011.08.008
Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR (2009) An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J Alzheimers Dis 16(4):741–761. doi:10.3233/JAD-2009-0972 PubMed Google Scholar
Moreira PI, Cardoso SM, Santos MS, Oliveira CR (2006) The key role of mitochondria in Alzheimer’s disease. J Alzheimers Dis 9(2):101–110 PubMedCAS Google Scholar
Huang TJ, Price SA, Chilton L, Calcutt NA, Tomlinson DR, Verkhratsky A, Fernyhough P (2003) Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes 52(8):2129–2136 ArticlePubMedCAS Google Scholar
Moreira PI, Santos MS, Sena C, Seica R, Oliveira CR (2005) Insulin protects against amyloid beta-peptide toxicity in brain mitochondria of diabetic rats. Neurobiol Dis 18(3):628–637. doi:10.1016/j.nbd.2004.10.017 ArticlePubMedCAS Google Scholar
Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) _O_-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A 101(29):10804–10809. doi:10.1073/pnas.0400348101 ArticlePubMedCAS Google Scholar
Liu F, Shi J, Tanimukai H, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Reduced _O_-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain 132(Pt 7):1820–1832. doi:10.1093/brain/awp099 ArticlePubMed Google Scholar
Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Brain glucose transporters, _O_-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer’s disease. J Neurochem 111(1):242–249. doi:10.1111/j.1471-4159.2009.06320.x ArticlePubMedCAS Google Scholar
Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1):54–62. doi:10.1002/path.2912 ArticlePubMedCAS Google Scholar
Hoyer S, Henneberg N, Knapp S, Lannert H, Martin E (1996) Brain glucose metabolism is controlled by amplification and desensitization of the neuronal insulin receptors. Ann N Y Acad Sci 777(1):374–379 ArticlePubMedCAS Google Scholar
Craft S, Dagogo-Jack SE, Wiethop BV, Murphy C, Nevins RT, Fleischman S, Rice V, Newcomer JW, Cryer PE (1993) Effects of hyperglycemia on memory and hormone levels in dementia of the Alzheimer type: a longitudinal study. Behav Neurosci 107(6):926–940 ArticlePubMedCAS Google Scholar
Manning CA, Ragozzino ME, Gold PE (1993) Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer’s type. Neurobiol Aging 14(6):523–528 ArticlePubMedCAS Google Scholar
Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, Reiman EM, Holthoff V, Kalbe E, Sorbi S, Diehl-Schmid J, Perneczky R, Clerici F, Caselli R, Beuthien-Baumann B, Kurz A, Minoshima S, de Leon MJ (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 49(3):390–398. doi:10.2967/jnumed.107.045385 ArticlePubMed Google Scholar
Friedland RP, Budinger TF, Koss E, Ober BA (1985) Alzheimer’s disease: anterior–posterior and lateral hemispheric alterations in cortical glucose utilization. Neurosci Lett 53(3):235–240 ArticlePubMedCAS Google Scholar
Craft S, Newcomer J, Kanne S, Dagogo-Jack S, Cryer P, Sheline Y, Luby J, Dagogo-Jack A, Alderson A (1996) Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiol Aging 17(1):123–130 ArticlePubMedCAS Google Scholar
Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD, Cherrier M, Lofgreen C, Latendresse S, Petrova A, Plymate S, Raskind M, Grimwood K, Veith RC (1999) Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 56(12):1135–1140 ArticlePubMedCAS Google Scholar
Brunham LR, Kruit JK, Verchere CB, Hayden MR (2008) Cholesterol in islet dysfunction and type 2 diabetes. J Clin Invest 118(2):403–408. doi:10.1172/JCI33296 ArticlePubMedCAS Google Scholar
Osborne AR, Pollock VV, Lagor WR, Ness GC (2004) Identification of insulin-responsive regions in the HMG-CoA reductase promoter. Biochem Biophys Res Commun 318(4):814–818. doi:10.1016/j.bbrc.2004.04.105 ArticlePubMedCAS Google Scholar
Evans RM, Hui S, Perkins A, Lahiri DK, Poirier J, Farlow MR (2004) Cholesterol and APOE genotype interact to influence Alzheimer disease progression. Neurology 62(10):1869–1871 ArticlePubMedCAS Google Scholar
Petanceska SS, DeRosa S, Olm V, Diaz N, Sharma A, Thomas-Bryant T, Duff K, Pappolla M, Refolo LM (2002) Statin therapy for Alzheimer’s disease: will it work? J Mol Neurosci 19(1–2):155–161. doi:10.1007/s12031-002-0026-2 ArticlePubMedCAS Google Scholar
Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57(10):1439–1443 ArticlePubMedCAS Google Scholar
Nelson TJ, Alkon DL (2005) Insulin and cholesterol pathways in neuronal function, memory and neurodegeneration. Biochem Soc Trans 33(Pt 5):1033–1036. doi:10.1042/BST20051033 PubMedCAS Google Scholar
Dehay B, Bezard E (2011) New animal models of Parkinson’s disease. Mov Disord 26(7):1198–1205 ArticlePubMed Google Scholar
Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 36(5):343–362 ArticlePubMedCAS Google Scholar
Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964(1):107–115 ArticlePubMedCAS Google Scholar
Moroo I, Yamada T, Makino H, Tooyama I, McGeer PL, McGeer EG, Hirayama K (1994) Loss of insulin receptor immunoreactivity from the substantia nigra pars compacta neurons in Parkinson’s disease. Acta Neuropathol 87(4):343–348 ArticlePubMedCAS Google Scholar
Takahashi M, Yamada T, Tooyama I, Moroo I, Kimura H, Yamamoto T, Okada H (1996) Insulin receptor mRNA in the substantia nigra in Parkinson’s disease. Neurosci Lett 204(3):201–204 ArticlePubMedCAS Google Scholar
Sandyk R (1993) The relationship between diabetes mellitus and Parkinson’s disease. Int J Neurosci 69(1–4):125–130 ArticlePubMedCAS Google Scholar
Kuranuki S, Arai C, Terada S, Aoyama T, Nakamura T (2011) Possible regulatory factors for intra-abdominal fat mass in a rat model of Parkinson’s disease. Nutrition 27(2):239–243. doi:10.1016/j.nut.2009.12.002 ArticlePubMed Google Scholar
Wilhelm KR, Yanamandra K, Gruden MA, Zamotin V, Malisauskas M, Casaite V, Darinskas A, Forsgren L, Morozova-Roche LA (2007) Immune reactivity towards insulin, its amyloid and protein S100B in blood sera of Parkinson’s disease patients. Eur J Neurol 14(3):327–334. doi:10.1111/j.1468-1331.2006.01667.x PubMedCAS Google Scholar
Xu Q, Park Y, Huang X, Hollenbeck A, Blair A, Schatzkin A, Chen H (2011) Diabetes and risk of Parkinson’s disease. Diabetes Care 34(4):910–915. doi:10.2337/dc10-1922 ArticlePubMed Google Scholar
Schernhammer E, Hansen J, Rugbjerg K, Wermuth L, Ritz B (2011) Diabetes and the risk of developing Parkinson’s disease in Denmark. Diabetes Care 34(5):1102–1108. doi:10.2337/dc10-1333 ArticlePubMed Google Scholar
Driver JA, Smith A, Buring JE, Gaziano JM, Kurth T, Logroscino G (2008) Prospective cohort study of type 2 diabetes and the risk of Parkinson’s disease. Diabetes Care 31(10):2003–2005. doi:10.2337/dc08-0688 ArticlePubMed Google Scholar
Jimenez-Jimenez FJ, Molina JA, Vargas C, Gomez P, De Bustos F, Zurdo M, Gomez-Escalonilla C, Barcenilla B, Berbel A, Camacho A, Arenas J (2000) Normal cerebrospinal fluid levels of insulin in patients with Parkinson’s disease. J Neural Transm 107(4):445–449 ArticlePubMedCAS Google Scholar
Vroon A, Drukarch B, Bol JG, Cras P, Breve JJ, Allan SM, Relton JK, Hoogland PV, Van Dam AM (2007) Neuroinflammation in Parkinson’s patients and MPTP-treated mice is not restricted to the nigrostriatal system: microgliosis and differential expression of interleukin-1 receptors in the olfactory bulb. Exp Gerontol 42(8):762–771. doi:10.1016/j.exger.2007.04.010 ArticlePubMedCAS Google Scholar
Depino AM, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, del Rey A, Pitossi FJ, Oertel WH (2003) Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci 18(10):2731–2742 ArticlePubMed Google Scholar
He Y, Appel S, Le W (2001) Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 909(1–2):187–193 ArticlePubMedCAS Google Scholar
Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28(30):7687–7698. doi:10.1523/jneurosci.0143-07.2008 ArticlePubMedCAS Google Scholar
Tseng YT, Hsu YY, Shih YT, Lo YC (2012) Paeonol attenuates microglia-mediated inflammation and oxidative stress-induced neurotoxicity in rat primary microglia and cortical neurons. Shock (Augusta, Ga) 37(3):312–318. doi:10.1097/SHK.0b013e31823fe939 ArticleCAS Google Scholar
Swanson CR, Joers V, Bondarenko V, Brunner K, Simmons HA, Ziegler TE, Kemnitz JW, Johnson JA, Emborg ME (2011) The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflammation 8:91. doi:10.1186/1742-2094-8-91 ArticlePubMedCAS Google Scholar
Morris JK, Bomhoff GL, Gorres BK, Davis VA, Kim J, Lee PP, Brooks WM, Gerhardt GA, Geiger PC, Stanford JA (2011) Insulin resistance impairs nigrostriatal dopamine function. Exp Neurol 231(1):171–180. doi:10.1016/j.expneurol.2011.06.005 ArticlePubMedCAS Google Scholar
Saller CF (1984) Dopaminergic activity is reduced in diabetic rats. Neurosci Lett 49(3):301–306 ArticlePubMedCAS Google Scholar
Murzi E, Contreras Q, Teneud L, Valecillos B, Parada MA, De Parada MP, Hernandez L (1996) Diabetes decreases limbic extracellular dopamine in rats. Neurosci Lett 202(3):141–144 ArticlePubMedCAS Google Scholar
Morris JK, Bomhoff GL, Stanford JA, Geiger PC (2010) Neurodegeneration in an animal model of Parkinson’s disease is exacerbated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol 299(4):R1082–R1090. doi:10.1152/ajpregu.00449.2010 ArticlePubMedCAS Google Scholar
Figlewicz DP, Brot MD, McCall AL, Szot P (1996) Diabetes causes differential changes in CNS noradrenergic and dopaminergic neurons in the rat: a molecular study. Brain Res 736(1–2):54–60 ArticlePubMedCAS Google Scholar
Kono T, Takada M (1994) Dopamine depletion in nigrostriatal neurons in the genetically diabetic rat. Brain Res 634(1):155–158 ArticlePubMedCAS Google Scholar
Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM (1993) Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res 602(1):161–164 ArticlePubMedCAS Google Scholar
Figlewicz DP, Szot P, Chavez M, Woods SC, Veith RC (1994) Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Res 644(2):331–334 ArticlePubMedCAS Google Scholar
Liu Z, Wang Y, Zhao W, Ding J, Mei Z, Guo L, Cui D, Fei J (2001) Peptide derived from insulin with regulatory activity of dopamine transporter. Neuropharmacology 41(4):464–471 ArticlePubMedCAS Google Scholar
Patterson TA, Brot MD, Zavosh A, Schenk JO, Szot P, Figlewicz DP (1998) Food deprivation decreases mRNA and activity of the rat dopamine transporter. Neuroendocrinology 68(1):11–20 ArticlePubMedCAS Google Scholar
Colin E, Regulier E, Perrin V, Durr A, Brice A, Aebischer P, Deglon N, Humbert S, Saudou F (2005) Akt is altered in an animal model of Huntington’s disease and in patients. Eur J Neurosci 21(6):1478–1488. doi:10.1111/j.1460-9568.2005.03985.x ArticlePubMed Google Scholar
Hashimoto K, Ito Y, Tanahashi H, Hayashi M, Yamakita N, Yasuda K (2012) Hyperglycemic chorea-ballism or acute exacerbation of Huntington’s chorea? Huntington’s disease unmasked by diabetic ketoacidosis in type 1 diabetes mellitus. J Clin Endocrinol Metab 97(9):3016–3020. doi:10.1210/jc.2012-1190 ArticlePubMedCAS Google Scholar
Boesgaard TW, Nielsen TT, Josefsen K, Hansen T, Jorgensen T, Pedersen O, Norremolle A, Nielsen JE, Hasholt L (2009) Huntington’s disease does not appear to increase the risk of diabetes mellitus. J Neuroendocrinol 21(9):770–776. doi:10.1111/j.1365-2826.2009.01898.x ArticlePubMedCAS Google Scholar
Napolitano M, Costa L, Palermo R, Giovenco A, Vacca A, Gulino A (2011) Protective effect of pioglitazone, a PPARgamma ligand, in a 3 nitropropionic acid model of Huntington’s disease. Brain Res Bull 85(3–4):231–237. doi:10.1016/j.brainresbull.2011.03.011 ArticlePubMedCAS Google Scholar
Kalonia H, Kumar A (2011) Suppressing inflammatory cascade by cyclo-oxygenase inhibitors attenuates quinolinic acid induced Huntington’s disease-like alterations in rats. Life Sci 88(17–18):784–791. doi:10.1016/j.lfs.2011.02.020 ArticlePubMedCAS Google Scholar
Podolsky S, Leopold NA, Sax DS (1972) Increased frequency of diabetes mellitus in patients with Huntington’s chorea. Lancet 1(7765):1356–1358 ArticlePubMedCAS Google Scholar
Podolsky S, Leopold NA (1977) Abnormal glucose tolerance and arginine tolerance tests in Huntington’s disease. Gerontology 23(1):55–63 ArticlePubMedCAS Google Scholar
Bjorkqvist M, Fex M, Renstrom E, Wierup N, Petersen A, Gil J, Bacos K, Popovic N, Li JY, Sundler F, Brundin P, Mulder H (2005) The R6/2 transgenic mouse model of Huntington’s disease develops diabetes due to deficient beta-cell mass and exocytosis. Hum Mol Genet 14(5):565–574. doi:10.1093/hmg/ddi053 ArticlePubMedCAS Google Scholar
Smith R, Bacos K, Fedele V, Soulet D, Walz HA, Obermuller S, Lindqvist A, Bjorkqvist M, Klein P, Onnerfjord P, Brundin P, Mulder H, Li JY (2009) Mutant huntingtin interacts with {beta}-tubulin and disrupts vesicular transport and insulin secretion. Hum Mol Genet 18(20):3942–3954. doi:10.1093/hmg/ddp336 ArticlePubMedCAS Google Scholar
Andreassen OA, Dedeoglu A, Stanojevic V, Hughes DB, Browne SE, Leech CA, Ferrante RJ, Habener JF, Beal MF, Thomas MK (2002) Huntington’s disease of the endocrine pancreas: insulin deficiency and diabetes mellitus due to impaired insulin gene expression. Neurobiol Dis 11(3):410–424 ArticlePubMedCAS Google Scholar
Hurlbert MS, Zhou W, Wasmeier C, Kaddis FG, Hutton JC, Freed CR (1999) Mice transgenic for an expanded CAG repeat in the Huntington’s disease gene develop diabetes. Diabetes 48(3):649–651 ArticlePubMedCAS Google Scholar
Hunt MJ, Morton AJ (2005) Atypical diabetes associated with inclusion formation in the R6/2 mouse model of Huntington’s disease is not improved by treatment with hypoglycaemic agents. Exp Brain Res Experimentelle Hirnforschung Experimentation Cerebrale 166(2):220–229. doi:10.1007/s00221-005-2357-z ArticleCAS Google Scholar
Lalic NM, Maric J, Svetel M, Jotic A, Stefanova E, Lalic K, Dragasevic N, Milicic T, Lukic L, Kostic VS (2008) Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 65(4):476–480. doi:10.1001/archneur.65.4.476 ArticlePubMed Google Scholar
Duarte AI, Petit GH, Ranganathan S, Li JY, Oliveira CR, Brundin P, Bjorkqvist M, Rego AC (2011) IGF-1 protects against diabetic features in an in vivo model of Huntington’s disease. Exp Neurol 231(2):314–319. doi:10.1016/j.expneurol.2011.06.016 ArticlePubMedCAS Google Scholar
Gamberino WC, Brennan WA Jr (1994) Glucose transporter isoform expression in Huntington’s disease brain. J Neurochem 63(4):1392–1397 ArticlePubMedCAS Google Scholar
Cardoso S, Correia S, Santos RX, Carvalho C, Santos MS, Oliveira CR, Perry G, Smith MA, Zhu X, Moreira PI (2009) Insulin is a two-edged knife on the brain. J Alzheimers Dis 18(3):483–507. doi:10.3233/jad-2009-1155 PubMedCAS Google Scholar
Crocker SF, Costain WJ, Robertson HA (2006) DNA microarray analysis of striatal gene expression in symptomatic transgenic Huntington’s mice (R6/2) reveals neuroinflammation and insulin associations. Brain Res 1088(1):176–186. doi:10.1016/j.brainres.2006.02.102 ArticlePubMedCAS Google Scholar
Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, Finkbeiner S, Greenberg ME, Saudou F (2002) The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell 2(6):831–837 ArticlePubMedCAS Google Scholar
Yamamoto A, Cremona ML, Rothman JE (2006) Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol 172(5):719–731. doi:10.1083/jcb.200510065 ArticlePubMedCAS Google Scholar
Reichel A, Schwarz J, Schulze J, Licinio J, Wong ML, Bornstein SR (2005) Depression and anxiety symptoms in diabetic patients on continuous subcutaneous insulin infusion (CSII). Mol Psychiatry 10(11):975–976. doi:10.1038/sj.mp.4001726 ArticlePubMedCAS Google Scholar
Knol MJ, Twisk JW, Beekman AT, Heine RJ, Snoek FJ, Pouwer F (2006) Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia 49(5):837–845. doi:10.1007/s00125-006-0159-x ArticlePubMedCAS Google Scholar
Pan A, Lucas M, Sun Q, van Dam RM, Franco OH, Manson JE, Willett WC, Ascherio A, Hu FB (2010) Bidirectional association between depression and type 2 diabetes mellitus in women. Arch Intern Med 170(21):1884–1891. doi:10.1001/archinternmed.2010.356 ArticlePubMed Google Scholar
Pearson S, Schmidt M, Patton G, Dwyer T, Blizzard L, Otahal P, Venn A (2010) Depression and insulin resistance: cross-sectional associations in young adults. Diabetes Care 33(5):1128–1133. doi:10.2337/dc09-1940 ArticlePubMedCAS Google Scholar
Shomaker LB, Tanofsky-Kraff M, Young-Hyman D, Han JC, Yanoff LB, Brady SM, Yanovski SZ, Yanovski JA (2010) Psychological symptoms and insulin sensitivity in adolescents. Pediatr Diabetes 11(6):417–423. doi:10.1111/j.1399-5448.2009.00606.x ArticlePubMed Google Scholar
Grey M, Whittemore R, Tamborlane W (2002) Depression in type 1 diabetes in children: natural history and correlates. J Psychosom Res 53(4):907–911 ArticlePubMed Google Scholar
Timonen M, Rajala U, Jokelainen J, Keinanen-Kiukaanniemi S, Meyer-Rochow VB, Rasanen P (2006) Depressive symptoms and insulin resistance in young adult males: results from the Northern Finland 1966 birth cohort. Mol Psychiatry 11(10):929–933. doi:10.1038/sj.mp.4001838 ArticlePubMedCAS Google Scholar
Pan A, Ye X, Franco OH, Li H, Yu Z, Zou S, Zhang Z, Jiao S, Lin X (2008) Insulin resistance and depressive symptoms in middle-aged and elderly Chinese: findings from the Nutrition and Health of Aging Population in China Study. J Affect Disord 109(1–2):75–82. doi:10.1016/j.jad.2007.11.002 ArticlePubMedCAS Google Scholar
Potyralska MM, Krawczyk AK (2007) Depression in patients with type 2 diabetes mellitus–clinical and therapeutical implications. Wiad Lek 60(9–10):449–453 PubMed Google Scholar
Kivimaki M, Tabak AG, Lawlor DA, Batty GD, Singh-Manoux A, Jokela M, Virtanen M, Salo P, Oksanen T, Pentti J, Witte DR, Vahtera J (2010) Antidepressant use before and after the diagnosis of type 2 diabetes: a longitudinal modeling study. Diabetes Care 33(7):1471–1476. doi:10.2337/dc09-2359 ArticlePubMed Google Scholar
Miyata S, Hirano S, Kamei J (2004) Diabetes attenuates the antidepressant-like effect mediated by the activation of 5-HT1A receptor in the mouse tail suspension test. Neuropsychopharmacology 29(3):461–469. doi:10.1038/sj.npp.1300354 ArticlePubMedCAS Google Scholar
Anderson RJ, Freedland KE, Clouse RE, Lustman PJ (2001) The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 24(6):1069–1078 ArticlePubMedCAS Google Scholar
de Groot M, Anderson R, Freedland KE, Clouse RE, Lustman PJ (2001) Association of depression and diabetes complications: a meta-analysis. Psychosom Med 63(4):619–630 PubMed Google Scholar
Ali S, Stone MA, Peters JL, Davies MJ, Khunti K (2006) The prevalence of co-morbid depression in adults with type 2 diabetes: a systematic review and meta-analysis. Diabet Med 23(11):1165–1173. doi:10.1111/j.1464-5491.2006.01943.x ArticlePubMedCAS Google Scholar
Broderick PA, Jacoby JH (1989) Central monoamine dysfunction in diabetes: psychotherapeutic implications: electroanalysis by voltammetry. Acta Physiol Pharmacol Latinoam 39(3):211–225 PubMedCAS Google Scholar
Chen CC, Yang JC (1991) Effects of short and long-lasting diabetes mellitus on mouse brain monoamines. Brain Res 552(1):175–179 ArticlePubMedCAS Google Scholar
Lackovic Z, Salkovic M, Kuci Z, Relja M (1990) Effect of long-lasting diabetes mellitus on rat and human brain monoamines. J Neurochem 54(1):143–147 ArticlePubMedCAS Google Scholar
Chu PC, Lin MT, Shian LR, Leu SY (1986) Alterations in physiologic functions and in brain monoamine content in streptozocin-diabetic rats. Diabetes 35(4):481–485 ArticlePubMedCAS Google Scholar
Crandall EA, Gillis MA, Fernstrom JD (1981) Reduction in brain serotonin synthesis rate in streptozotocin-diabetic rats. Endocrinology 109(1):310–312 ArticlePubMedCAS Google Scholar
Sandrini M, Vitale G, Vergoni AV, Ottani A, Bertolini A (1997) Streptozotocin-induced diabetes provokes changes in serotonin concentration and on 5-HT1A and 5-HT2 receptors in the rat brain. Life Sci 60(16):1393–1397 ArticlePubMedCAS Google Scholar
Sumiyoshi T, Ichikawa J, Meltzer HY (1997) The effect of streptozotocin-induced diabetes on dopamine2, serotonin1A and serotonin2A receptors in the rat brain. Neuropsychopharmacology 16(3):183–190. doi:10.1016/S0893-133X(96)00185-6 ArticlePubMedCAS Google Scholar
Li JX, France CP (2008) Food restriction and streptozotocin treatment decrease 5-HT1A and 5-HT2A receptor-mediated behavioral effects in rats. Behav Pharmacol 19(4):292–297. doi:10.1097/FBP.0b013e328308f1d6 ArticlePubMedCAS Google Scholar
Jackson J, Paulose CS (1999) Enhancement of [_m_-methoxy 3H]MDL100907 binding to 5HT2A receptors in cerebral cortex and brain stem of streptozotocin induced diabetic rats. Mol Cell Biochem 199(1–2):81–85 ArticlePubMedCAS Google Scholar
Price JC, Kelley DE, Ryan CM, Meltzer CC, Drevets WC, Mathis CA, Mazumdar S, Reynolds CF 3rd (2002) Evidence of increased serotonin-1A receptor binding in type 2 diabetes: a positron emission tomography study. Brain Res 927(1):97–103 ArticlePubMedCAS Google Scholar
Bellush LL, Reid SG, North D (1991) The functional significance of biochemical alterations in streptozotocin-induced diabetes. Physiol Behav 50(5):973–981 ArticlePubMedCAS Google Scholar
Leonard BE, Schwarz M, Myint AM (2012) The metabolic syndrome in schizophrenia: is inflammation a contributing cause? J Psychopharmacol (Oxford, England) 26(5 Suppl):33–41. doi:10.1177/0269881111431622 Article Google Scholar
Guest PC, Schwarz E, Krishnamurthy D, Harris LW, Leweke FM, Rothermundt M, van Beveren NJ, Spain M, Barnes A, Steiner J, Rahmoune H, Bahn S (2011) Altered levels of circulating insulin and other neuroendocrine hormones associated with the onset of schizophrenia. Psychoneuroendocrinology 36(7):1092–1096. doi:10.1016/j.psyneuen.2010.12.018 ArticlePubMedCAS Google Scholar
Venkatasubramanian G, Chittiprol S, Neelakantachar N, Naveen MN, Thirthall J, Gangadhar BN, Shetty KT (2007) Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. Am J Psychiatry 164(10):1557–1560. doi:10.1176/appi.ajp.2007.07020233 ArticlePubMed Google Scholar
Cohn TA, Remington G, Zipursky RB, Azad A, Connolly P, Wolever TM (2006) Insulin resistance and adiponectin levels in drug-free patients with schizophrenia: a preliminary report. Can J Psychiatry 51(6):382–386 PubMed Google Scholar
van Nimwegen LJ, Storosum JG, Blumer RM, Allick G, Venema HW, de Haan L, Becker H, van Amelsvoort T, Ackermans MT, Fliers E, Serlie MJ, Sauerwein HP (2008) Hepatic insulin resistance in antipsychotic naive schizophrenic patients: stable isotope studies of glucose metabolism. J Clin Endocrinol Metab 93(2):572–577. doi:10.1210/jc.2007-1167 ArticlePubMedCAS Google Scholar
Kirkpatrick B, Miller BJ, Garcia-Rizo C, Fernandez-Egea E, Bernardo M (2010) Is abnormal glucose tolerance in antipsychotic-naive patients with nonaffective psychosis confounded by poor health habits? Schizophr Bull. doi:10.1093/schbul/sbq058
Zhao Z, Ksiezak-Reding H, Riggio S, Haroutunian V, Pasinetti GM (2006) Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res 84(1):1–14. doi:10.1016/j.schres.2006.02.009 ArticlePubMed Google Scholar
Guest PC, Wang L, Harris LW, Burling K, Levin Y, Ernst A, Wayland MT, Umrania Y, Herberth M, Koethe D, van Beveren JM, Rothermundt M, McAllister G, Leweke FM, Steiner J, Bahn S (2010) Increased levels of circulating insulin-related peptides in first-onset, antipsychotic naive schizophrenia patients. Mol Psychiatry 15(2):118–119. doi:10.1038/mp.2009.81 ArticlePubMedCAS Google Scholar
Ryan MC, Collins P, Thakore JH (2003) Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry 160(2):284–289 ArticlePubMed Google Scholar
Maric N, Doknic M, Damjanovic A, Pekic S, Jasovic-Gasic M, Popovic V (2008) Glucoregulation in normal weight schizophrenia patients treated by first generation antipsychotics. Srp Arh Celok Lek 136(3–4):110–115 ArticlePubMed Google Scholar
Oresic M, Seppanen-Laakso T, Sun D, Tang J, Therman S, Viehman R, Mustonen U, van Erp TG, Hyotylainen T, Thompson P, Toga AW, Huttunen MO, Suvisaari J, Kaprio J, Lonnqvist J, Cannon TD (2012) Phospholipids and insulin resistance in psychosis: a lipidomics study of twin pairs discordant for schizophrenia. Genome Med 4(1):1. doi:10.1186/gm300 ArticlePubMedCAS Google Scholar
Dasgupta A, Singh OP, Rout JK, Saha T, Mandal S (2010) Insulin resistance and metabolic profile in antipsychotic naive schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 34(7):1202–1207. doi:10.1016/j.pnpbp.2010.06.011 ArticlePubMedCAS Google Scholar
Altar CA, Hunt RA, Jurata LW, Webster MJ, Derby E, Gallagher P, Lemire A, Brockman J, Laeng P (2008) Insulin, IGF-1, and muscarinic agonists modulate schizophrenia-associated genes in human neuroblastoma cells. Biol Psychiatry 64(12):1077–1087. doi:10.1016/j.biopsych.2008.08.031 ArticlePubMedCAS Google Scholar
Fan X, Copeland PM, Liu EY, Chiang E, Freudenreich O, Goff DC, Henderson DC (2011) No effect of single-dose intranasal insulin treatment on verbal memory and sustained attention in patients with schizophrenia. J Clin Psychopharmacol 31(2):231–234. doi:10.1097/JCP.0b013e31820ebd0e ArticlePubMedCAS Google Scholar
Lozovsky D, Saller CF, Kopin IJ (1981) Dopamine receptor binding is increased in diabetic rats. Science 214(4524):1031–1033 ArticlePubMedCAS Google Scholar
Jones K (2000) Insulin coma therapy in schizophrenia. J R Soc Med 93(3):147–149 PubMedCAS Google Scholar