MicroRNAs in Cardiovascular Diseases: Biology and Potential Clinical Applications (original) (raw)

References

  1. Abbas, N. A., John, R. I., Webb, M. C., Kempson, M. E., Potter, A. N., Price, C. P., et al. (2005). Cardiac troponins and renal function in nondialysis patients with chronic kidney disease. Clinical Chemistry, 51, 2059–2066.
    Article CAS PubMed Google Scholar
  2. Ai, J., Zhang, R., Li, Y., Pu, J., Lu, Y., Jiao, J., et al. (2010). Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochemical and Biophysical Research Communications, 391, 73–77.
    Google Scholar
  3. Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., et al. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 33, 2697–2706.
    Article CAS PubMed Google Scholar
  4. Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27, 2128–2136.
    Article CAS PubMed Google Scholar
  5. Barringhaus, K. G., & Zamore, P. D. (2009). MicroRNAs: Regulating a change of heart. Circulation, 119, 2217–2224.
    Article PubMed Google Scholar
  6. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233.
    Article CAS PubMed Google Scholar
  7. Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., Bussani, R., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. New England Journal of Medicine, 344, 1750–1757.
    Article CAS PubMed Google Scholar
  8. Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35, 215–217.
    Article CAS PubMed Google Scholar
  9. Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324, 1710–1713.
    Article CAS PubMed Google Scholar
  10. Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural & Molecular Biology, 13, 1097–1101.
    Article CAS Google Scholar
  11. Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., et al. (2005). A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine, 353, 1793–1801.
    Article CAS PubMed Google Scholar
  12. Callis, T. E., Pandya, K., Seok, H. Y., Tang, R. H., Tatsuguchi, M., Huang, Z. P., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. Journal of Clinical Investigation, 119, 2772–2786.
    Article CAS PubMed Google Scholar
  13. Callis, T. E., & Wang, D. Z. (2008). Taking microRNAs to heart. Trends in Molecular Medicine, 14, 254–260.
    Article CAS PubMed Google Scholar
  14. Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.
    Article CAS PubMed Google Scholar
  15. Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38, 228–233.
    Article CAS PubMed Google Scholar
  16. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18, 997–1006.
    Article CAS PubMed Google Scholar
  17. Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? American Journal of Pathology, 170, 1831–1840.
    Article CAS PubMed Google Scholar
  18. Cheng, Y., Liu, X., Yang, J., Lin, Y., Xu, D. Z., Lu, Q., et al. (2009). MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circulation Research, 105, 158–166.
    Article CAS PubMed Google Scholar
  19. Chim, S. S., Shing, T. K., Hung, E. C., Leung, T. Y., Lau, T. K., Chiu, R. W., et al. (2008). Detection and characterization of placental microRNAs in maternal plasma. Clinical Chemistry, 54, 482–490.
    Article CAS PubMed Google Scholar
  20. Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., et al. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38, 813–818.
    Article CAS PubMed Google Scholar
  21. Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460, 705–710.
    CAS PubMed Google Scholar
  22. Cordes, K. R., & Srivastava, D. (2009). MicroRNA regulation of cardiovascular development. Circulation Research, 104, 724–732.
    Article CAS PubMed Google Scholar
  23. Cortez, M. A., & Calin, G. A. (2009). MicroRNA identification in plasma and serum: A new tool to diagnose and monitor diseases. Expert Opinion on Biol Ther, 9, 703–711.
    Article CAS Google Scholar
  24. Currie, R. W., Tanguay, R. M., & Kingma, J. G., Jr. (1993). Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation, 87, 963–971.
    CAS PubMed Google Scholar
  25. da Costa Martins, P. A., Bourajjaj, M., Gladka, M., Kortland, M., van Oort, R. J., Pinto, Y. M., et al. (2008). Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation, 118, 1567–1576.
    Article PubMed CAS Google Scholar
  26. Divakaran, V., & Mann, D. L. (2008). The emerging role of microRNAs in cardiac remodeling and heart failure. Circulation Research, 103, 1072–1083.
    Article CAS PubMed Google Scholar
  27. Dong, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., et al. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. Journal of Biological Chemistry, 284, 29514–29525.
    Article CAS PubMed Google Scholar
  28. Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res, 104, 170–178. 176p following 178.
    Article CAS PubMed Google Scholar
  29. Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods, 4, 721–726.
    Article CAS PubMed Google Scholar
  30. Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature, 452, 896–899.
    Article CAS PubMed Google Scholar
  31. Elmen, J., Lindow, M., Silahtaroglu, A., Bak, M., Christensen, M., Lind-Thomsen, A., et al. (2008). Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Research, 36, 1153–1162.
    Article CAS PubMed Google Scholar
  32. Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab, 3, 87–98.
    Article CAS PubMed Google Scholar
  33. Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the root of miRNA-mediated gene silencing. Cell, 132, 9–14.
    Article CAS PubMed Google Scholar
  34. Fasanaro, P., D'Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283, 15878–15883.
    Article CAS PubMed Google Scholar
  35. Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developments in Cell, 15, 272–284.
    Article CAS Google Scholar
  36. Frey, N., & Olson, E. N. (2003). Cardiac hypertrophy: The good, the bad, and the ugly. Annual Review of Physiology, 65, 45–79.
    Article CAS PubMed Google Scholar
  37. Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19, 92–105.
    Article CAS PubMed Google Scholar
  38. Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., et al. (2008). Serum microRNAs are promising novel biomarkers. PLoS ONE, 3, e3148.
    Article PubMed CAS Google Scholar
  39. Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). miRBase: Tools for microRNA genomics. Nucleic Acids Research, 36, D154–D158.
    Article CAS PubMed Google Scholar
  40. Grimm, D., Streetz, K. L., Jopling, C. L., Storm, T. A., Pandey, K., Davis, C. R., et al. (2006). Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 441, 537–541.
    Article CAS PubMed Google Scholar
  41. Hoffman, J. I. (1995). Incidence of congenital heart disease: II. Prenatal incidence. Pediatric Cardiology, 16, 155–165.
    Article CAS PubMed Google Scholar
  42. Horie, T., Ono, K., Nishi, H., Iwanaga, Y., Nagao, K., Kinoshita, M., et al. (2009). MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochemical and Biophysical Research Communications, 389, 315–320.
    Article CAS PubMed Google Scholar
  43. Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. New England Journal of Medicine, 341, 1276–1283.
    Article CAS PubMed Google Scholar
  44. Hunter, M. P., Ismail, N., Zhang, X., Aguda, B. D., Lee, E. J., Yu, L., et al. (2008). Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE, 3, e3694.
    Article PubMed CAS Google Scholar
  45. Hutter, M. M., Sievers, R. E., Barbosa, V., & Wolfe, C. L. (1994). Heat-shock protein induction in rat hearts. A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation, 89, 355–360.
    CAS PubMed Google Scholar
  46. Ikeda, S., Kong, S. W., Lu, J., Bisping, E., Zhang, H., Allen, P. D., et al. (2007). Altered microRNA expression in human heart disease. Physiological Genomics, 31, 367–373.
    Article CAS PubMed Google Scholar
  47. Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R. F., Fish, J. E., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2, 219–229.
    Article CAS PubMed Google Scholar
  48. Jackson, A. L., Burchard, J., Leake, D., Reynolds, A., Schelter, J., Guo, J., et al. (2006). Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA, 12, 1197–1205.
    Article CAS PubMed Google Scholar
  49. Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circulation Research, 100, 1579–1588.
    Article CAS PubMed Google Scholar
  50. Ji, X., Takahashi, R., Hiura, Y., Hirokawa, G., Fukushima, Y., & Iwai, N. (2009). Plasma miR-208 as a biomarker of myocardial injury. Clinical Chemistry, 55, 1944–1949.
    Article CAS PubMed Google Scholar
  51. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120, 635–647.
    Article CAS PubMed Google Scholar
  52. Kajstura, J., Urbanek, K., Rota, M., Bearzi, C., Hosoda, T., Bolli, R., et al. (2008). Cardiac stem cells and myocardial disease. Journal of Molecular and Cellular Cardiology, 45, 505–513.
    Article CAS PubMed Google Scholar
  53. Kim, H. W., Haider, H. K., Jiang, S., & Ashraf, M. (2009). Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8 associated protein 2. Journal of Biological Chemistry, 284, 33161–33168.
    Article PubMed CAS Google Scholar
  54. Kloosterman, W. P., Wienholds, E., Ketting, R. F., & Plasterk, R. H. (2004). Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Research, 32, 6284–6291.
    Article CAS PubMed Google Scholar
  55. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7, 430–436.
    Article CAS PubMed Google Scholar
  56. Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438, 685–689.
    Article PubMed CAS Google Scholar
  57. Kuehbacher, A., Urbich, C., & Dimmeler, S. (2008). Targeting microRNA expression to regulate angiogenesis. Trends in Pharmacological Sciences, 29, 12–15.
    Article CAS PubMed Google Scholar
  58. Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101, 59–68.
    Article CAS PubMed Google Scholar
  59. Kwon, C., Han, Z., Olson, E. N., & Srivastava, D. (2005). MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proceedings of the National Academy of Sciences of the United States of America, 102, 18986–18991.
    Article CAS PubMed Google Scholar
  60. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12, 735–739.
    Article CAS PubMed Google Scholar
  61. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129, 1401–1414.
    Article CAS PubMed Google Scholar
  62. Laterza, O. F., Lim, L., Garrett-Engele, P. W., Vlasakova, K., Muniappa, N., Tanaka, W. K., et al. (2009). Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clinical Chemistry, 55, 1977–1983.
    Article CAS PubMed Google Scholar
  63. Latronico, M. V., Catalucci, D., & Condorelli, G. (2007). Emerging role of microRNAs in cardiovascular biology. Circulation Research, 101, 1225–1236.
    Article CAS PubMed Google Scholar
  64. Latronico, M. V., & Condorelli, G. (2009). MicroRNAs and cardiac pathology. Nature Reviews Cardiol, 6, 419–429.
    Google Scholar
  65. Lee, I., Ajay, S. S., Yook, J. I., Kim, H. S., Hong, S. H., Kim, N. H., et al. (2009). New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res, 19, 1175–1183.
    Article CAS PubMed Google Scholar
  66. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.
    Article CAS PubMed Google Scholar
  67. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., et al. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23, 4051–4060.
    Article CAS PubMed Google Scholar
  68. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.
    Article CAS PubMed Google Scholar
  69. Liu, J., Valencia-Sanchez, M. A., Hannon, G. J., & Parker, R. (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biology, 7, 719–723.
    Article CAS PubMed Google Scholar
  70. Liu, N., Williams, A. H., Kim, Y., McAnally, J., Bezprozvannaya, S., Sutherland, L. B., et al. (2007). An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proceedings of the National Academy of Sciences of the United States of America, 104, 20844–20849.
    Article CAS PubMed Google Scholar
  71. Liu, X., Cheng, Y., Zhang, S., Lin, Y., Yang, J., & Zhang, C. (2009). A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circulation Research, 104, 476–487.
    Article CAS PubMed Google Scholar
  72. Loya, C. M., Lu, C. S., Van Vactor, D., & Fulga, T. A. (2009). Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods, 6, 897–903.
    Article CAS PubMed Google Scholar
  73. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.
    Article CAS PubMed Google Scholar
  74. Lu, Y., Zhang, Y., Shan, H., Pan, Z., Li, X., Li, B., et al. (2009). MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: A new mechanism for ischaemic cardioprotection. Cardiovascular Research, 84, 434–441.
    Article CAS PubMed Google Scholar
  75. Luo, X., Lin, H., Pan, Z., Xiao, J., Zhang, Y., Lu, Y., et al. (2008). Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. Journal of Biological Chemistry, 283, 20045–20052.
    Article CAS PubMed Google Scholar
  76. Luo, X., Xiao, J., Lin, H., Li, B., Lu, Y., Yang, B., et al. (2007). Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes and potential implications in regional heterogeneity of their expressions. Journal of Cellular Physiology, 212, 358–367.
    Article CAS PubMed Google Scholar
  77. Lytle, J. R., Yario, T. A., & Steitz, J. A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proceedings of the National Academy of Sciences of the United States of America, 104, 9667–9672.
    Article CAS PubMed Google Scholar
  78. Mandel, E. M., Callis, T. E., Wang, D. Z., & Conlon, F. L. (2005). Transcriptional mechanisms of congenital heart disease. Drug Discovery Today, 2, 33–38.
    CAS PubMed Google Scholar
  79. Marber, M. S., Latchman, D. S., Walker, J. M., & Yellon, D. M. (1993). Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation, 88, 1264–1272.
    CAS PubMed Google Scholar
  80. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110, 563–574.
    Article CAS PubMed Google Scholar
  81. Mathonnet, G., Fabian, M. R., Svitkin, Y. V., Parsyan, A., Huck, L., Murata, T., et al. (2007). MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science, 317, 1764–1767.
    Article CAS PubMed Google Scholar
  82. Matkovich, S. J., Van Booven, D. J., Youker, K. A., Torre-Amione, G., Diwan, A., Eschenbacher, W. H., et al. (2009). Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation, 119, 1263–1271.
    Article CAS PubMed Google Scholar
  83. Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S. T., & Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133, 647–658.
    Article CAS PubMed Google Scholar
  84. Menghini, R., Casagrande, V., Cardellini, M., Martelli, E., Terrinoni, A., Amati, F., et al. (2009). MicroRNA-217 modulates endothelial cell senescence via silent information regulator 1. Circulation, 120, 1524–1532.
    Article CAS PubMed Google Scholar
  85. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.
    Article CAS PubMed Google Scholar
  86. Naga Prasad, S. V., Duan, Z. H., Gupta, M. K., Surampudi, V. S., Volinia, S., Calin, G. A., et al. (2009). Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. Journal of Biological Chemistry, 284, 27487–27499.
    Article CAS PubMed Google Scholar
  87. Ng, E. K., Chong, W. W., Jin, H., Lam, E. K., Shin, V. Y., Yu, J., et al. (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut, 58, 1375–1381.
    Article CAS PubMed Google Scholar
  88. Petersen, C. P., Bordeleau, M. E., Pelletier, J., & Sharp, P. A. (2006). Short RNAs repress translation after initiation in mammalian cells. Molecular Cell, 21, 533–542.
    Article CAS PubMed Google Scholar
  89. Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., Zoller, T., Cougot, N., Basyuk, E., et al. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science, 309, 1573–1576.
    Article CAS PubMed Google Scholar
  90. Place, R. F., Li, L. C., Pookot, D., Noonan, E. J., & Dahiya, R. (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proceedings of the National Academy of Sciences of the United States of America, 105, 1608–1613.
    Article CAS PubMed Google Scholar
  91. Rane, S., He, M., Sayed, D., Vashistha, H., Malhotra, A., Sadoshima, J., et al. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circulation Research, 104, 879–886.
    Article CAS PubMed Google Scholar
  92. Ransom, J., & Srivastava, D. (2007). The genetics of cardiac birth defects. Seminars in Cell & Developmental Biology, 18, 132–139.
    Article CAS Google Scholar
  93. Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S., & Lodish, H. F. (2006). Myogenic factors that regulate expression of muscle-specific microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 103, 8721–8726.
    Article CAS PubMed Google Scholar
  94. Rao, P. K., Toyama, Y., Chiang, H. R., Gupta, S., Bauer, M., Medvid, R., et al. (2009). Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circulation Research, 105, 585–594.
    Article CAS PubMed Google Scholar
  95. Ren, X. P., Wu, J., Wang, X., Sartor, M. A., Qian, J., Jones, K., et al. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation, 119, 2357–2366.
    Article CAS PubMed Google Scholar
  96. Roy, S., Khanna, S., Hussain, S. R., Biswas, S., Azad, A., Rink, C., et al. (2009). MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovascular Research, 82, 21–29.
    Article CAS PubMed Google Scholar
  97. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100, 416–424.
    Article CAS PubMed Google Scholar
  98. Sayed, D., Rane, S., Lypowy, J., He, M., Chen, I. Y., Vashistha, H., et al. (2008). MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Molecular Biology of the Cell, 19, 3272–3282.
    Article CAS PubMed Google Scholar
  99. Scheinowitz, M., Abramov, D., & Eldar, M. (1997). The role of insulin-like and basic fibroblast growth factors on ischemic and infarcted myocardium: A mini review. International Journal of Cardiology, 59, 1–5.
    Article CAS PubMed Google Scholar
  100. Schipper, M. E., van Kuik, J., de Jonge, N., Dullens, H. F., & de Weger, R. A. (2008). Changes in regulatory microRNA expression in myocardium of heart failure patients on left ventricular assist device support. Journal of Heart and Lung Transplantation, 27, 1282–1285.
    Article PubMed Google Scholar
  101. Shan, H., Li, X., Pan, Z., Zhang, L., Cai, B., Zhang, Y., et al. (2009). Tanshinone IIA protects against sudden cardiac death induced by lethal arrhythmias via repression of microRNA-1. British Journal of Pharmacology, 158, 1227–1235.
    Article CAS PubMed Google Scholar
  102. Shan, Z. X., Lin, Q. X., Fu, Y. H., Deng, C. Y., Zhou, Z. L., Zhu, J. N., et al. (2009). Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochemical and Biophysical Research Communications, 381, 597–601.
    Article CAS PubMed Google Scholar
  103. Shilo, S., Roy, S., Khanna, S., & Sen, C. K. (2008). Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 471–477.
    Article CAS PubMed Google Scholar
  104. Silvestri, P., Rigattieri, S., & Loschiavo, P. (2008). Does the effect of microRNAs in vascular neointimal formation depend on cell cycle phase? Circulation Research, 102, e101. author reply e102.
    Article CAS PubMed Google Scholar
  105. Sokol, N. S., & Ambros, V. (2005). Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes and Development, 19, 2343–2354.
    Article CAS PubMed Google Scholar
  106. Subramanian, S., Lui, W. O., Lee, C. H., Espinosa, I., Nielsen, T. O., Heinrich, M. C., et al. (2008). MicroRNA expression signature of human sarcomas. Oncogene, 27, 2015–2026.
    Article CAS PubMed Google Scholar
  107. Suckau, L., Fechner, H., Chemaly, E., Krohn, S., Hadri, L., Kockskamper, J., et al. (2009). Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation, 119, 1241–1252.
    Article CAS PubMed Google Scholar
  108. Syed, I. S., Sanborn, T. A., & Rosengart, T. K. (2004). Therapeutic angiogenesis: A biologic bypass. Cardiology, 101, 131–143.
    Article PubMed Google Scholar
  109. Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5, 434–438.
    Article CAS PubMed Google Scholar
  110. Takaya, T., Ono, K., Kawamura, T., Takanabe, R., Kaichi, S., Morimoto, T., et al. (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circolo J, 73, 1492–1497.
    Article CAS Google Scholar
  111. Tang, Y., Zheng, J., Sun, Y., Wu, Z., Liu, Z., & Huang, G. (2009). MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J, 50, 377–387.
    Article CAS PubMed Google Scholar
  112. Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42, 1137–1141.
    Article CAS PubMed Google Scholar
  113. Taulli, R., Bersani, F., Foglizzo, V., Linari, A., Vigna, E., Ladanyi, M., et al. (2009). The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. Journal of Clinical Investigation, 119, 2366–2378.
    CAS PubMed Google Scholar
  114. Thum, T., Catalucci, D., & Bauersachs, J. (2008). MicroRNAs: Novel regulators in cardiac development and disease. Cardiovascular Research, 79, 562–570.
    Article CAS PubMed Google Scholar
  115. Thum, T., Galuppo, P., Wolf, C., Fiedler, J., Kneitz, S., van Laake, L. W., et al. (2007). MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation, 116, 258–267.
    Article CAS PubMed Google Scholar
  116. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984.
    Article CAS PubMed Google Scholar
  117. Urbich, C., Kuehbacher, A., & Dimmeler, S. (2008). Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research, 79, 581–588.
    Article CAS PubMed Google Scholar
  118. Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell, 137, 1032–1046.
    Article CAS PubMed Google Scholar
  119. van Rooij, E., Quiat, D., Johnson, B. A., Sutherland, L. B., Qi, X., Richardson, J. A., et al. (2009). A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Developments in Cell, 17, 662–673.
    Article CAS Google Scholar
  120. van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103, 18255–18260.
    Article PubMed CAS Google Scholar
  121. van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316, 575–579.
    Article PubMed CAS Google Scholar
  122. van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13027–13032.
    Article PubMed Google Scholar
  123. van Solingen, C., Seghers, L., Bijkerk, R., Duijs, J. M., Roeten, M. K., van Oeveren-Rietdijk, A. M., et al. (2009). Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. Journal of Cellular and Molecular Medicine, 13, 1577–1585.
    Article PubMed CAS Google Scholar
  124. Vasilescu, C., Rossi, S., Shimizu, M., Tudor, S., Veronese, A., Ferracin, M., et al. (2009). MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS ONE, 4, e7405.
    Article PubMed CAS Google Scholar
  125. Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: MicroRNAs can up-regulate translation. Science, 318, 1931–1934.
    Article CAS PubMed Google Scholar
  126. Wang, H., Garzon, R., Sun, H., Ladner, K. J., Singh, R., Dahlman, J., et al. (2008). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14, 369–381.
    Article CAS PubMed Google Scholar
  127. Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developments in Cell, 15, 261–271.
    Article CAS Google Scholar
  128. Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., & Plasterk, R. H. (2003). The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genetics, 35, 217–218.
    Article CAS PubMed Google Scholar
  129. Wolfrum, C., Shi, S., Jayaprakash, K. N., Jayaraman, M., Wang, G., Pandey, R. K., et al. (2007). Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnology, 25, 1149–1157.
    Article CAS PubMed Google Scholar
  130. Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., et al. (2007). MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. Journal of Biological Chemistry, 282, 12363–12367.
    Article CAS PubMed Google Scholar
  131. Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., et al. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science, 120, 3045–3052.
    Article CAS PubMed Google Scholar
  132. Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Medicine, 13, 486–491.
    Article CAS PubMed Google Scholar
  133. Yekta, S., Shih, I. H., & Bartel, D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science, 304, 594–596.
    Article CAS PubMed Google Scholar
  134. Yin, C., Salloum, F. N., & Kukreja, R. C. (2009). A novel role of microRNA in late preconditioning: Upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circulation Research, 104, 572–575.
    Article CAS PubMed Google Scholar
  135. Yin, C., Wang, X., & Kukreja, R. C. (2008). Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Letters, 582, 4137–4142.
    Article CAS PubMed Google Scholar
  136. York, M., Scudamore, C., Brady, S., Chen, C., Wilson, S., Curtis, M., et al. (2007). Characterization of troponin responses in isoproterenol-induced cardiac injury in the Hanover Wistar rat. Toxicologic Pathology, 35, 606–617.
    Article CAS PubMed Google Scholar
  137. Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129, 303–317.
    Article CAS PubMed Google Scholar
  138. Zhao, Y., Samal, E., & Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214–220.
    Article CAS PubMed Google Scholar

Download references