- Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27. https://doi.org/10.1056/NEJMoa1614362.
Article PubMed Google Scholar
- Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81. https://doi.org/10.1016/s0140-6736(14)60460-8.
Article PubMed PubMed Central Google Scholar
- Franks PW, McCarthy MI. Exposing the exposures responsible for type 2 diabetes and obesity. Science. 2016;354:69–73. https://doi.org/10.1126/science.aaf5094.
Article CAS PubMed Google Scholar
- Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here? Science. 2003;299:853–5. https://doi.org/10.1126/science.1079857.
Article CAS PubMed Google Scholar
- Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care. 2010;33:2277–84. https://doi.org/10.2337/dc10-0556.
Article PubMed PubMed Central Google Scholar
- Rastelli M, Knauf C, Cani PD. Gut microbes and health: a focus on the mechanisms linking microbes, obesity, and related disorders. Obesity(Silver Spring). 2018;26:792–800. https://doi.org/10.1002/oby.22175.
Article Google Scholar
- Moran-Ramos S, Lopez-Contreras BE, Canizales-Quinteros S. Gut microbiota in obesity and metabolic abnormalities: a matter of composition or functionality? Arch Med Res. 2017;48:735–53. https://doi.org/10.1016/j.arcmed.2017.11.003.
Article PubMed Google Scholar
- Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20. https://doi.org/10.1126/science.1104816.
Article CAS PubMed Google Scholar
- Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–9. https://doi.org/10.1126/science.1124234.
Article CAS PubMed PubMed Central Google Scholar
- Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533. https://doi.org/10.1371/journal.pbio.1002533.
Article CAS PubMed PubMed Central Google Scholar
- Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. https://doi.org/10.1038/nature08821.
Article CAS PubMed PubMed Central Google Scholar
- Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14. https://doi.org/10.1038/nature11234.
Article CAS Google Scholar
- Hartstra AV, Bouter KE, Backhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38:159–65. https://doi.org/10.2337/dc14-0769.
Article CAS PubMed Google Scholar
- Jimenez E, Marin ML, Martin R, Odriozola JM, Olivares M, Xaus J, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159:187–93. https://doi.org/10.1016/j.resmic.2007.12.007.
Article CAS PubMed Google Scholar
- Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177. https://doi.org/10.1371/journal.pbio.0050177.
Article CAS PubMed PubMed Central Google Scholar
- Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4578–85. https://doi.org/10.1073/pnas.1000081107.
Article PubMed Google Scholar
- Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–99. https://doi.org/10.1016/j.cell.2014.09.053.
Article CAS PubMed PubMed Central Google Scholar
- Faith JJ, Colombel JF, Gordon JI. Identifying strains that contribute to complex diseases through the study of microbial inheritance. Proc Natl Acad Sci U S A. 2015;112:633–40. https://doi.org/10.1073/pnas.1418781112.
Article CAS PubMed PubMed Central Google Scholar
- Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22:713–22. https://doi.org/10.1038/nm.4142.
Article CAS PubMed Google Scholar
- Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016;280:339–49. https://doi.org/10.1111/joim.12508.
Article CAS PubMed Google Scholar
- Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB, Mills DA, et al. A microbial perspective of human developmental biology. Nature. 2016;535:48–55. https://doi.org/10.1038/nature18845.
Article CAS PubMed PubMed Central Google Scholar
- • Vallianou NG, Stratigou T, Tsagarakis S. Microbiome and diabetes: where are we now? Diabetes Res Clin Pract. 2018;146:111–8. https://doi.org/10.1016/j.diabres.2018.10.008 This review highlights the role of prebiotics, probiotics, genetically modified bacteria, and fecal microbiota transplantation, as potential therapeutic perspectives and challenges for type 2 diabetes.
Article CAS PubMed Google Scholar
- Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439. https://doi.org/10.1126/science.1237439.
Article CAS PubMed PubMed Central Google Scholar
- DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22:1137–50. https://doi.org/10.1097/mib.0000000000000750.
Article PubMed Google Scholar
- Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60. https://doi.org/10.1038/nature11450.
Article CAS PubMed Google Scholar
- Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103. https://doi.org/10.1038/nature12198.
Article CAS PubMed Google Scholar
- Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. https://doi.org/10.1371/journal.pone.0009085.
Article CAS PubMed PubMed Central Google Scholar
- Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8:e71108. https://doi.org/10.1371/journal.pone.0071108.
Article CAS PubMed PubMed Central Google Scholar
- Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014;63:1513–21. https://doi.org/10.1136/gutjnl-2014-306928.
Article CAS PubMed Google Scholar
- Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31. https://doi.org/10.1038/nature05414.
Article PubMed Google Scholar
- Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23. https://doi.org/10.1016/j.chom.2008.02.015.
Article CAS PubMed PubMed Central Google Scholar
- •• Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. https://doi.org/10.1126/science.1241214 This study shows that gut microbiota from twins discordant for obesity may modulate metabolism in mice revealing that obesity-associated metabolic phenotypes were transmissible with fecal transplantation.
Article CAS PubMed Google Scholar
- Carvalho BM, Guadagnini D, Tsukumo DML, Schenka AA, Latuf-Filho P, Vassallo J, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55:2823–34. https://doi.org/10.1007/s00125-012-2648-4.
Article CAS PubMed Google Scholar
- Carvalho BM, Guadagnini D, Tsukumo DML, Schenka AA, Latuf-Filho P, Vassallo J, et al. Expression of concern: modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2017. https://doi.org/10.1007/s00125-017-4293-4.
- Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–6. https://doi.org/10.1038/nature15766.
Article CAS PubMed PubMed Central Google Scholar
- Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–36. https://doi.org/10.1136/gutjnl-2014-308778.
Article CAS PubMed Google Scholar
- Rampelli S, Guenther K, Turroni S, Wolters M, Veidebaum T, Kourides Y, et al. Pre-obese children’s dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Commun Biol. 2018;1:222. https://doi.org/10.1038/s42003-018-0221-5.
Article PubMed PubMed Central Google Scholar
- Candela M, Biagi E, Maccaferri S, Turroni S, Brigidi P. Intestinal microbiota is a plastic factor responding to environmental changes. Trends Microbiol. 2012;20:385–91. https://doi.org/10.1016/j.tim.2012.05.003.
Article CAS PubMed Google Scholar
- Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4. https://doi.org/10.1038/nature07540.
Article CAS PubMed Google Scholar
- Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6. https://doi.org/10.1038/nature12506.
Article CAS PubMed Google Scholar
- Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8. https://doi.org/10.1038/nature12480.
Article CAS PubMed Google Scholar
- Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes. 2012;36:817–25. https://doi.org/10.1038/ijo.2011.153.
Article CAS Google Scholar
- Lin SW, Freedman ND, Shi J, Gail MH, Vogtmann E, Yu G, et al. Beta-diversity metrics of the upper digestive tract microbiome are associated with body mass index. Obesity (Silver Spring). 2015;23:862–9. https://doi.org/10.1002/oby.21020.
Article CAS Google Scholar
- Murugesan S, Ulloa-Martinez M, Martinez-Rojano H, Galvan-Rodriguez FM, Miranda-Brito C, Romano MC, et al. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis. 2015;34:1337–46. https://doi.org/10.1007/s10096-015-2355-4.
Article CAS PubMed Google Scholar
- Hu HJ, Park SG, Jang HB, Choi MK, Park KH, Kang JH, et al. Obesity alters the microbial community profile in Korean adolescents. PLoS One. 2015;10:e0134333. https://doi.org/10.1371/journal.pone.0134333.
Article CAS PubMed PubMed Central Google Scholar
- Bondia-Pons I, Maukonen J, Mattila I, Rissanen A, Saarela M, Kaprio J, et al. Metabolome and fecal microbiota in monozygotic twin pairs discordant for weight: a Big Mac challenge. FASEB J. 2014;28:4169–79. https://doi.org/10.1096/fj.14-250167.
Article CAS PubMed PubMed Central Google Scholar
- Ignacio A, Fernandes MR, Rodrigues VA, Groppo FC, Cardoso AL, Avila-Campos MJ, et al. Correlation between body mass index and faecal microbiota from children. Clin Microbiol Infect. 2016;22:258.e1–8. https://doi.org/10.1016/j.cmi.2015.10.031.
Article CAS Google Scholar
- Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015;15:100. https://doi.org/10.1186/s12876-015-0330-2.
Article PubMed PubMed Central Google Scholar
- Haro C, Rangel-Zuniga OA, Alcala-Diaz JF, Gomez-Delgado F, Perez-Martinez P, Delgado-Lista J, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS Biol. 2016;11:e0154090. https://doi.org/10.1371/journal.pone.0154090.
Article CAS Google Scholar
- •• Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–38. https://doi.org/10.1016/j.cmet.2015.07.009 The results of this study show that after bariatric surgery, the gut microbiota may play a direct role in the reduction of adiposity.
Article CAS PubMed PubMed Central Google Scholar
- Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Konigsrainer A, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:806248. https://doi.org/10.1155/2015/806248.
Article CAS PubMed PubMed Central Google Scholar
- Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8:67. https://doi.org/10.1186/s13073-016-0312-1.
Article CAS PubMed PubMed Central Google Scholar
- Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13:514–22. https://doi.org/10.1038/tpj.2012.43.
Article CAS PubMed Google Scholar
- Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. 2016;7. https://doi.org/10.1128/mBio.01018-16.
- Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One. 2014;9:e84689. https://doi.org/10.1371/journal.pone.0084689.
Article CAS PubMed PubMed Central Google Scholar
- Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–33. https://doi.org/10.1016/j.febslet.2014.09.039.
Article CAS PubMed PubMed Central Google Scholar
- •• Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019. https://doi.org/10.1038/s41574-019-0156-z This review focuses on the role of metabolites derived from microbial carbohydrate and protein fermentation in relation to obesity and obesity-associated insulin resistance, T2DM and NAFLD.
- den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015;64:2398–408. https://doi.org/10.2337/db14-1213.
Article CAS Google Scholar
- De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156:84–96. https://doi.org/10.1016/j.cell.2013.12.016.
Article CAS PubMed Google Scholar
- Lin HV, Frassetto A, Kowalik EJ, Jr., Nawrocki AR, Lu MM, Kosinski JR et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012;7:e35240. https://doi.org/10.1371/journal.pone.0035240.
- Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4:e121. https://doi.org/10.1038/nutd.2014.23.
Article CAS PubMed PubMed Central Google Scholar
- Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58:1509–17. https://doi.org/10.2337/db08-1637.
Article CAS PubMed PubMed Central Google Scholar
- Xu YH, Gao CL, Guo HL, Zhang WQ, Huang W, Tang SS, et al. Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice. J Endocrinol. 2018;238:231–44. https://doi.org/10.1530/joe-18-0137.
Article CAS PubMed Google Scholar
- Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67:1269–79. https://doi.org/10.1136/gutjnl-2017-314050.
Article CAS PubMed Google Scholar
- •• Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Vosa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019. https://doi.org/10.1038/s41588-019-0350-x . This study provides evidence of a causal effect of the gut microbiome and its metabolites on metabolic traits.
- Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55:321–30. https://doi.org/10.1007/s00125-011-2356-5.
Article CAS PubMed Google Scholar
- Cardona F, Andres-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuno MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013;24:1415–22. https://doi.org/10.1016/j.jnutbio.2013.05.001.
Article CAS PubMed Google Scholar
- •• Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81. https://doi.org/10.1038/nature18646 This study suggests that microbial metabolites may have the potential to diminish insulin resistance and to decrease the incidence of common metabolic and cardiovascular disorders.
Article CAS PubMed Google Scholar
- Prinz P, Hofmann T, Ahnis A, Elbelt U, Goebel-Stengel M, Klapp BF, et al. Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients. Front Neurosci. 2015;9:199. https://doi.org/10.3389/fnins.2015.00199.
Article PubMed PubMed Central Google Scholar
- Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids. Diabetes. 2013;62:4184–91. https://doi.org/10.2337/db13-0639.
Article CAS PubMed PubMed Central Google Scholar
- Haeusler RA, Camastra S, Nannipieri M, Astiarraga B, Castro-Perez J, Xie D, et al. Increased bile acid synthesis and impaired bile acid transport in human obesity. J Clin Endocrinol Metab. 2016;101:1935–44. https://doi.org/10.1210/jc.2015-2583.
Article CAS PubMed Google Scholar
- Tang WH, Hazen SL. Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl Res. 2017;179:108–15. https://doi.org/10.1016/j.trsl.2016.07.007.
Article CAS PubMed Google Scholar
- Moran-Ramos S, Ocampo-Medina E, Gutierrez-Aguilar R, Macias-Kauffer L, Villamil-Ramirez H, Lopez-Contreras BE, et al. An amino acid signature associated with obesity predicts 2-year risk of hypertriglyceridemia in school-age children. Sci Rep. 2017;7:5607. https://doi.org/10.1038/s41598-017-05765-4.
Article CAS PubMed PubMed Central Google Scholar
- Dore J, Blottiere H. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol. 2015;32:195–9. https://doi.org/10.1016/j.copbio.2015.01.002.
Article CAS PubMed Google Scholar
- Tsuneyama K, Nishitsuji K, Matsumoto M, Kobayashi T, Morimoto Y, Tsunematsu T, et al. Animal models for analyzing metabolic syndrome-associated liver diseases. Pathol Int. 2017;67:539–46. https://doi.org/10.1111/pin.12600.
Article PubMed Google Scholar
- Nishitsuji K, Watanabe S, Xiao J, Nagatomo R, Ogawa H, Tsunematsu T, et al. Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci Rep. 2018;8:16173. https://doi.org/10.1038/s41598-018-34571-9.
Article CAS PubMed PubMed Central Google Scholar
- Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328:228–31. https://doi.org/10.1126/science.1179721.
Article CAS PubMed PubMed Central Google Scholar
- Awoyemi A, Troseid M, Arnesen H, Solheim S, Seljeflot I. Markers of metabolic endotoxemia as related to metabolic syndrome in an elderly male population at high cardiovascular risk: a cross-sectional study. Diabetol Metab Syndr. 2018;10:59. https://doi.org/10.1186/s13098-018-0360-3.
Article CAS PubMed PubMed Central Google Scholar
- Liu F, Li P, Chen M, Luo Y, Prabhakar M, Zheng H, et al. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Sci Rep. 2017;7:11789. https://doi.org/10.1038/s41598-017-10722-2.
Article CAS PubMed PubMed Central Google Scholar
- Wang H, Hong T, Li N, Zang B, Wu X. Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota. Biochem Biophys Res Commun. 2018;498:146–51. https://doi.org/10.1016/j.bbrc.2018.02.017.
Article CAS PubMed Google Scholar
- Lim J, Kale M, Kim DH, Kim HS, Chon JW, Seo KH, et al. Antiobesity effect of exopolysaccharides isolated from kefir grains. J Agric Food Chem. 2017;65:10011–9. https://doi.org/10.1021/acs.jafc.7b03764.
Article CAS PubMed Google Scholar
- Goldsmith F, Guice J, Page R, Welsh DA, Taylor CM, Blanchard EE, et al. Obese ZDF rats fermented resistant starch with effects on gut microbiota but no reduction in abdominal fat. Mol Nutr Food Res. 2017:61. https://doi.org/10.1002/mnfr.201501025.
- Torcello-Gomez A, Foster TJ. Interactions between cellulose ethers and a bile salt in the control of lipid digestion of lipid-based systems. Carbohydr Polym. 2014;113:53–61. https://doi.org/10.1016/j.carbpol.2014.06.070.
Article CAS PubMed Google Scholar
- Fan Y, He Q, Luo A, Wang M, Luo A. Characterization and antihyperglycemic activity of a polysaccharide from Dioscorea opposita Thunb roots. Int J Mol Sci. 2015;16:6391–401. https://doi.org/10.3390/ijms16036391.
Article CAS PubMed PubMed Central Google Scholar
- Tang Z, Gao H, Wang S, Wen S, Qin S. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. Int J Biol Macromol. 2013;58:186–9. https://doi.org/10.1016/j.ijbiomac.2013.03.048.
Article CAS PubMed Google Scholar
- Raish M. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-kappaB signaling pathway. Int J Biol Macromol. 2017;97:544–51. https://doi.org/10.1016/j.ijbiomac.2017.01.074.
Article CAS PubMed Google Scholar
- Choi JW, Synytsya A, Capek P, Bleha R, Pohl R, Park YI. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.). Carbohydr Polym. 2016;146:187–96. https://doi.org/10.1016/j.carbpol.2016.03.043.
Article CAS PubMed Google Scholar
- Ben Abdallah Kolsi R, Ben Gara A, Chaaben R, El Feki A, Patti FP, El Feki L, et al. Anti-obesity and lipid lowering effects of Cymodocea nodosa sulphated polysaccharide on high cholesterol-fed-rats. Arch Physiol Biochem. 2015;121:210–7. https://doi.org/10.3109/13813455.2015.1105266.
Article CAS PubMed Google Scholar
- Kolsi RBA, Jardak N, Hajkacem F, Chaaben R, Jribi I, Feki AE, et al. Anti-obesity effect and protection of liver-kidney functions by Codium fragile sulphated polysaccharide on high fat diet induced obese rats. Int J Biol Macromol. 2017;102:119–29. https://doi.org/10.1016/j.ijbiomac.2017.04.017.
Article CAS PubMed Google Scholar
- Mao Y, Wei B, Teng J, Xia N, Zhao M, Huang L, et al. Polysaccharides from Chinese Liupao dark tea and their protective effect against hyperlipidemia. Int J Food Sci Technol. 2017;53:599–607. https://doi.org/10.1111/ijfs.13633.
Article CAS Google Scholar
- Wang Y, Zhu Y, Ruan K, Wei H, Feng Y. MDG-1, a polysaccharide from Ophiopogon japonicus, prevents high fat diet-induced obesity and increases energy expenditure in mice. Carbohydr Polym. 2014;114:183–9. https://doi.org/10.1016/j.carbpol.2014.08.013.
Article CAS PubMed Google Scholar
- Shi L, Wang J, Wang Y, Feng Y. MDG-1, an Ophiopogon polysaccharide, alleviates hyperlipidemia in mice based on metabolic profile of bile acids. Carbohydr Polym. 2016;150:74–81. https://doi.org/10.1016/j.carbpol.2016.05.008.
Article CAS PubMed Google Scholar
- www.clinicaltrials.gov. Assessed on 19/01/2019.
- Weiss TW, Arnesen H, Seljeflot I. Components of the interleukin-6 transsignalling system are associated with the metabolic syndrome, endothelial dysfunction and arterial stiffness. Metabolism. 2013;62:1008–13. https://doi.org/10.1016/j.metabol.2013.01.019.
Article CAS PubMed Google Scholar
- Indulekha K, Surendar J, Mohan V. High sensitivity C-reactive protein, tumor necrosis factor-alpha, interleukin-6, and vascular cell adhesion molecule-1 levels in Asian Indians with metabolic syndrome and insulin resistance (CURES-105). J Diabetes Sci Technol. 2011;5:982–8. https://doi.org/10.1177/193229681100500421.
Article PubMed PubMed Central Google Scholar
- Rexrode KM, Pradhan A, Manson JE, Buring JE, Ridker PM. Relationship of total and abdominal adiposity with CRP and IL-6 in women. Ann Epidemiol. 2003;13:674–82.
Article PubMed Google Scholar
- Lepper PM, Schumann C, Triantafilou K, Rasche FM, Schuster T, Frank H, et al. Association of lipopolysaccharide-binding protein and coronary artery disease in men. J Am Coll Cardiol. 2007;50:25–31. https://doi.org/10.1016/j.jacc.2007.02.070.
Article CAS PubMed Google Scholar
- Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50:90–7. https://doi.org/10.1194/jlr.M800156-JLR200.
Article CAS PubMed Google Scholar
- Vors C, Pineau G, Drai J, Meugnier E, Pesenti S, Laville M, et al. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J Clin Endocrinol Metab. 2015;100:3427–35. https://doi.org/10.1210/jc.2015-2518.
Article CAS PubMed Google Scholar
- Munkholm P, Langholz E, Hollander D, Thornberg K, Orholm M, Katz KD, et al. Intestinal permeability in patients with Crohn’s disease and ulcerative colitis and their first degree relatives. Gut. 1994;35:68–72.
Article CAS PubMed PubMed Central Google Scholar
- Troseid M, Nestvold TK, Rudi K, Thoresen H, Nielsen EW, Lappegard KT. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence from bariatric surgery. Diabetes Care. 2013;36:3627–32. https://doi.org/10.2337/dc13-0451.
Article CAS PubMed PubMed Central Google Scholar
- Mehta NN, McGillicuddy FC, Anderson PD, Hinkle CC, Shah R, Pruscino L, et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes. 2010;59:172–81. https://doi.org/10.2337/db09-0367.
Article CAS PubMed Google Scholar
- Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, et al. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med. 1994;179:269–77.
Article CAS PubMed Google Scholar
- Le Roy D, Di Padova F, Tees R, Lengacher S, Landmann R, Glauser MP, et al. Monoclonal antibodies to murine lipopolysaccharide (LPS)-binding protein (LBP) protect mice from lethal endotoxemia by blocking either the binding of LPS to LBP or the presentation of LPS/LBP complexes to CD14. J Immunol. 1999;162:7454–60.
PubMed Google Scholar
- Moreno-Navarrete JM, Ortega F, Serino M, Luche E, Waget A, Pardo G, et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes. 2012;36:1442–9. https://doi.org/10.1038/ijo.2011.256.
Article CAS Google Scholar
- Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism. 2019;92:121–35. https://doi.org/10.1016/j.metabol.2018.11.001.
Article CAS PubMed Google Scholar
- Zhang Y, Zhang H. Microbiota associated with type 2 diabetes and its related complications. Food Sci Human Wellness. 2013;2:167–72. https://doi.org/10.1016/j.fshw.2013.09.002.
Article Google Scholar
- Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015–25. https://doi.org/10.1172/jci28898.
Article CAS PubMed PubMed Central Google Scholar
- Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem. 2019;63:101–8. https://doi.org/10.1016/j.jnutbio.2018.10.003.
Article CAS PubMed Google Scholar
- Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr. 2009;90:1236–43. https://doi.org/10.3945/ajcn.2009.28095.
Article CAS PubMed Google Scholar
- Liu F, Prabhakar M, Ju J, Long H, Zhou HW. Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2017;71:9–20. https://doi.org/10.1038/ejcn.2016.156.
Article CAS PubMed Google Scholar
- Lu ZX, Walker KZ, Muir JG, Mascara T, O'Dea K. Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am J Clin Nutr. 2000;71:1123–8. https://doi.org/10.1093/ajcn/71.5.1123.
Article CAS PubMed Google Scholar
- Neyrinck AM, Van Hee VF, Bindels LB, De Backer F, Cani PD, Delzenne NM. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br J Nutr. 2013;109:802–9. https://doi.org/10.1017/s0007114512002206.
Article CAS PubMed Google Scholar
- Vallianou NG, Evangelopoulos A, Kazazis C. Resveratrol and diabetes. Rev Diabet Stud. 2013;10:236–42. https://doi.org/10.1900/rds.2013.10.236.
Article PubMed Google Scholar
- Dao TM, Waget A, Klopp P, Serino M, Vachoux C, Pechere L, et al. Resveratrol increases glucose induced GLP-1 secretion in mice: a mechanism which contributes to the glycemic control. PLoS One. 2011;6:e20700. https://doi.org/10.1371/journal.pone.0020700.
Article CAS PubMed PubMed Central Google Scholar
- Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015;64:872–83. https://doi.org/10.1136/gutjnl-2014-307142.
Article CAS PubMed Google Scholar
- Xu J, Lian F, Zhao L, Zhao Y, Chen X, Zhang X, et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. Isme j. 2015;9:552–62. https://doi.org/10.1038/ismej.2014.177.
Article PubMed Google Scholar
- Akram Kooshki A, Tofighiyan T, Rakhshani MH. Effects of synbiotics on inflammatory markers in patients with type 2 diabetes mellitus. Glob J Health Sci. 2015;7:1–5. https://doi.org/10.5539/gjhs.v7n7p1.
Article CAS PubMed PubMed Central Google Scholar
- Bahmani F, Tajadadi-Ebrahimi M, Kolahdooz F, Mazouchi M, Hadaegh H, Jamal AS, et al. The consumption of synbiotic bread containing Lactobacillus sporogenes and inulin affects nitric oxide and malondialdehyde in patients with type 2 diabetes mellitus: randomized, double-blind, placebo-controlled trial. J Am Coll Nutr. 2016;35:506–13. https://doi.org/10.1080/07315724.2015.1032443.
Article CAS PubMed Google Scholar
- Mahboobi S, Rahimi F, Jafarnejad S. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: a meta-analysis of randomized controlled trials. Adv Pharm Bull. 2018;8:565–74. https://doi.org/10.15171/apb.2018.065.
Article PubMed PubMed Central Google Scholar
- Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10:686–90. https://doi.org/10.1038/nrgastro.2013.171.
Article CAS PubMed Google Scholar
- Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut. 2016;65:2035–44. https://doi.org/10.1136/gutjnl-2016-312729.
Article CAS PubMed Google Scholar
- Pappachan JM, Antonio FA, Edavalath M, Mukherjee A. Non-alcoholic fatty liver disease: a diabetologist’s perspective. Endocrine. 2014;45:344–53. https://doi.org/10.1007/s12020-013-0087-8.
Article CAS PubMed Google Scholar
- • Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274–85. https://doi.org/10.1111/j.1365-2036.2011.04724.x.
- Lau LHS, Wong SH. Microbiota, obesity and NAFLD. Adv Exp Med Biol. 2018;1061:111–25. https://doi.org/10.1007/978-981-10-8684-7_9.
Article CAS PubMed Google Scholar
- Rabot S, Membrez M, Bruneau A, Gerard P, Harach T, Moser M, et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 2010;24:4948–59. https://doi.org/10.1096/fj.10-164921.
Article CAS PubMed Google Scholar
- Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 2013;62:1787–94. https://doi.org/10.1136/gutjnl-2012-303816.
Article CAS PubMed Google Scholar
- Boursier J, Diehl AM. Nonalcoholic fatty liver disease and the gut microbiome. Clin Liver Dis. 2016;20:263–75. https://doi.org/10.1016/j.cld.2015.10.012.
Article PubMed Google Scholar
- • Vallianou N, Liu J, Dalamaga M. What are the key points in the association between the gut microbiome and nonalcoholic fatty liver disease? Metabolism Open 2019;1:9–10. https://doi.org/10.1016/j.metop.2019.02.003. In press. This mini-review underscores the key points in the association between the gut microbiome and NAFLD.
- Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem. 2015;48:923–30. https://doi.org/10.1016/j.clinbiochem.2015.06.023.
Article CAS PubMed PubMed Central Google Scholar
- Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63:764–75. https://doi.org/10.1002/hep.28356.
Article CAS PubMed Google Scholar
- Zhao Y, Wu J, Li JV, Zhou NY, Tang H, Wang Y. Gut microbiota composition modifies fecal metabolic profiles in mice. J Proteome Res. 2013;12:2987–99. https://doi.org/10.1021/pr400263n.
Article CAS PubMed Google Scholar
- Ruiz AG, Casafont F, Crespo J, Cayon A, Mayorga M, Estebanez A, et al. Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg. 2007;17:1374–80. https://doi.org/10.1007/s11695-007-9243-7.
Article PubMed Google Scholar
- Bouter KE, van Raalte DH, Groen AK, Nieuwdorp M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology. 2017;152:1671–8. https://doi.org/10.1053/j.gastro.2016.12.048.
Article CAS PubMed Google Scholar
- Pascale A, Marchesi N, Marelli C, Coppola A, Luzi L, Govoni S, et al. Microbiota and metabolic diseases. Endocrine. 2018;61:357–71. https://doi.org/10.1007/s12020-018-1605-5.
Article CAS PubMed Google Scholar
- Bressa C, Bailen-Andrino M, Perez-Santiago J, Gonzalez-Soltero R, Perez M, Montalvo-Lominchar MG, et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 2017;12:e0171352. https://doi.org/10.1371/journal.pone.0171352.
Article CAS PubMed PubMed Central Google Scholar
- Meyer D, Stasse-Wolthuis M. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr. 2009;63:1277–89. https://doi.org/10.1038/ejcn.2009.64.
Article CAS PubMed Google Scholar
- Crovesy L, Ostrowski M, Ferreira D, Rosado EL, Soares-Mota M. Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials. Int J Obes. 2017;41:1607–14. https://doi.org/10.1038/ijo.2017.161.
Article CAS Google Scholar
- Gao X, Zhu Y, Wen Y, Liu G, Wan C. Efficacy of probiotics in non-alcoholic fatty liver disease in adult and children: a meta-analysis of randomized controlled trials. Hepatol Res. 2016;46:1226–33. https://doi.org/10.1111/hepr.12671.
Article CAS PubMed Google Scholar
- Zheng J, Feng Q, Zheng S, Xiao X. The effects of probiotics supplementation on metabolic health in pregnant women: an evidence based meta-analysis. PLoS One. 2018;13:e0197771. https://doi.org/10.1371/journal.pone.0197771.
Article CAS PubMed PubMed Central Google Scholar
- Ferrarese R, Ceresola ER, Preti A, Canducci F. Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era. Eur Rev Med Pharmacol Sci. 2018;22:7588–605. https://doi.org/10.26355/eurrev_201811_16301.
Article CAS PubMed Google Scholar
- Hadi A, Alizadeh K, Hajianfar H, Mohammadi H, Miraghajani M. Efficacy of synbiotic supplementation in obesity treatment: a systematic review and meta-analysis of clinical trials. Crit Rev Food Sci Nutr. 2018:1–13. https://doi.org/10.1080/10408398.2018.1545218.
- Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, et al. Postbiotics: an evolving term within the functional foods field. Trends Food Sci Technol. 2018;75:105–14. https://doi.org/10.1016/j.tifs.2018.03.009.
Article CAS Google Scholar
- Thuny F, Richet H, Casalta JP, Angelakis E, Habib G, Raoult D. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One. 2010;5:e9074. https://doi.org/10.1371/journal.pone.0009074.
Article CAS PubMed PubMed Central Google Scholar
- Ajslev TA, Andersen CS, Gamborg M, Sorensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes. 2011;35:522–9. https://doi.org/10.1038/ijo.2011.27.
Article CAS Google Scholar
- Magouliotis DE, Tasiopoulou VS, Sioka E, Chatedaki C, Zacharoulis D. Impact of bariatric surgery on metabolic and gut microbiota profile: a systematic review and meta-analysis. Obes Surg. 2017;27:1345–57. https://doi.org/10.1007/s11695-017-2595-8.
Article PubMed Google Scholar
- Guo Y, Huang ZP, Liu CQ, Qi L, Sheng Y, Zou DJ. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. Eur J Endocrinol. 2018;178:43–56. https://doi.org/10.1530/eje-17-0403.
Article CAS PubMed Google Scholar