Biophysics of flagellar motility | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

References

Amos, L. (1978). Changes in tubulin surface lattice during flagellar bending. Abstracts, Sixth Int. Biophys. Cong. p. 380.Google Scholar

Amos, L. A., Linck, R. W., & Klug, A. (1976). Molecular structure of flagellar microtubules. In Cell Motility, vol. 3 (ed. Goldman, R., Pollard, T. D. and Rosenbaum, J.). Cold Spring Harbor Conferences on Cell Proliferation.Google Scholar

Anderson, R. G. W. & Hein, C. E. (1977). Distribution of anionic sites on the oviduct ciliary membrane. J. Cell Biol. 72, 482–492.CrossRefGoogle ScholarPubMed

Baba, S. (1978). OsO4-vapour fixation of flagellar waves in sea-urchin sperm. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic motility’, Hakone, p. 15.Google Scholar

Baccetti, B. & Dallai, R. (1976). The spermatozoon of Arthropoda. XXVII. Uncommon axoneme patterns in different species of the Cecidomyid flies. J. Ultrastruct. Res. 55, 50–69.CrossRefGoogle ScholarPubMed

Baccetti, B. & Dallai, R. (1978). The spermatozoon of Arthropoda. XXX. The multiflagellate spermatozoon in the termite Mastotermes darivincensis. J. Cell Biol. 76, 569–576.CrossRefGoogle Scholar

Baccetti, B., Dallai, R. & Ginusti, F. (1969 a). The spermatozoon of Arthropoda. VI. Ephemeroptera. J. Ultrastruct. Res. 29, 343–349.CrossRefGoogle ScholarPubMed

Baccetti, B., Dallai, R. & Rosati, F. (1969 b). The spermatozoon of Arthropoda. IV. Corrodentia, Mallophaga, and Thysanoptera. J. Microscopie 8, 249–262.Google Scholar

Baccetti, B., Dallai, R. & Rosati, F. (1970). The spermatozoon of Arthropoda. VIII. The 9+3 flagellum of spider sperm cells. J. Cell Biol. 44, 681–682.CrossRefGoogle Scholar

Baccetti, B., Dallai, R. & Fratello, B. (1973). The spermatozoon of Arthropoda. XXII. The 12+0, 14+0, or aflagellate sperm of Protura. J. Cell Sci. 13, 321–335.CrossRefGoogle ScholarPubMed

Baccetti, B., Burrini, A. G., Dallai, R. & Pallini, V. (1979). The dynein electrophoretic bands naturally lacking the inner or the outer arm. J. Cell Biol. 80, 334–340.CrossRefGoogle ScholarPubMed

Barclay, R., & Yount, R. G. (1972). Evidence for myosin-like intermediates in the hydrolysis of adenosine triphosphate by sperm tail flagella. J. biol. Chem. 247, 4098–4100.CrossRefGoogle ScholarPubMed

Baugh, L. C., Satir, P., & Satir, B. (1976). A ciliary membrane Ca++ ATPase, a correlation of structure and function. J. Cell Biol. 70, 66 a.Google Scholar

Bergstrom, B. H. & Henley, C. (1973). Flagellar necklaces: Freeze-etch observations. J. Ultrastruct. Res. 42, 551–553.CrossRefGoogle ScholarPubMed

Besson, M., Fay, R. B. & Witman, G. B. (1978). Calcium control of wave symmetry in isolated reactivated axonemes of Chlamydomonas. J. Cell Biol. 79, 306a.Google Scholar

Blake, J. (1972). A model for the micro-structure in ciliated organisms. J. Fluid Mech. 55, 1–23.CrossRefGoogle Scholar

Blum, J. J. (1973). ATPase activity of Tetrahymena cilia before and after extraction of dynein. Archs Biochem. Biophys. 156, 310–320.CrossRefGoogle ScholarPubMed

Blum, J. J. (1974). Dynein and biochemistry of ciliary motility. PAABS Rev. 3, 477–482.Google Scholar

Blum, J. J. & Felauer, E. (1959). Effect of dinitrophenol on the interaction between myosin and nucleotides. Archs Biochem. Biophys. 81, 285–299.CrossRefGoogle ScholarPubMed

Blum, J. J. & Hayes, A. (1974 a). On the role of sulfhydryl groups in the ATPase activity and pellet height response of Tetrahymena cilia. Archs Biochem. Biophys. 161, 239–247.CrossRefGoogle Scholar

Blum, J. J. & Hayes, A. (1974 b). Effect of _N_-ethylmaleimide and of heat treatment of binding of dynein to ethylenediaminetetraacetic acid extracted axonemes. Biochemistry, N.Y. 13, 4290–4298.CrossRefGoogle ScholarPubMed

Blum, J. J. & Hayes, A. (1976). Some changes in the properties of dynein ATPase in situ and after extraction following heat treatment of cilia. J. Supramol. Struct. 5, 15–25.CrossRefGoogle ScholarPubMed

Blum, J. J. & Hayes, A. (1977 a). A comparison of the effects of gentle heating, acetone, and the sulfhydryl reagent bis(4-fluoro-3-nitrophenyl) sulfone on the ATP ase activity and pellet height response to Tetrahymena cilia. J. Supramol. Struct. 6, 155–167.CrossRefGoogle Scholar

Blum, J. J. & Hayes, A. (1977 b). Effect of calcium on the pellet height response of Tetrahymena cilia. J. Supramol. Struct. 7, 205–211.CrossRefGoogle ScholarPubMed

Blum, J. J. & Hayes, A. (1978). Effects of sulfhydryl reagents on the ATPase activity of solubilized 14S and 30S dyneins and on whole ciliary axonemes as a function of pH. J. Supramol. Struct. 8, 153–171.CrossRefGoogle Scholar

Blum, J. J. & Hayes, A. (1979). The effect of dithiothreitol and of β-mercaptoethanol on the reaction of bis(4-fluoro-3-nitrophenyl)sulfone with ciliary dyneins. J. Supramol. Struct. (Submitted.)Google Scholar

Blum, J. J., Hayes, A., Whisnant, C. C. & Rosen, G. (1977). Effect of spin-labeled maleimide on 14S and 30S dyneins in solution and on demembranated ciliary axonemes. Biochemistry, N.Y. 16, 1937–1943.CrossRefGoogle ScholarPubMed

Brehm, P. & Eckert, R. (1978). Calcium entry leads to inactivation of calcium channel in Paramecium. Science, N.Y. 202, 1203–1206.CrossRefGoogle ScholarPubMed

Breland, O. P., Gassner, G., Riess, R. W. & Biesele, J. J. (1966). Certain aspects of the centriole adjunct, spermiogenesis, and the mature sperm of insects. Can. J. Genet. Cytol. 8, 759–773.CrossRefGoogle Scholar

Brennen, C. & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. A. Rev. Fluid Mech. 9, 339–398.CrossRefGoogle Scholar

Brokaw, C. J. (1966). Effects of increased viscosity on the movements of some invertebrate spermatozoa. J. exp. Biol. 45, 113–139.CrossRefGoogle ScholarPubMed

Brokaw, C. J. (1972 a). Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament mode. Biophys. J. 12, 564–586.CrossRefGoogle Scholar

Brokaw, C. J. (1972 b). Computer simulation of flagellar movement. II. Influence of external viscosity on movement of the sliding filament model. J. Mechanochem. & Cell Motility 1, 203–212.Google Scholar

Brokaw, C. J. (1974). Calcium and flagellar response during the chemotaxis of bracken spermatozoids. J. Cell. comp. Physiol. 83, 151–158.CrossRefGoogle ScholarPubMed

Brokaw, C. J. (1975 a). Effects of viscosity and ATP concentration on the movement of reactivated sea urchin sperm flagella. J. exp. Biol. 62, 701–719.CrossRefGoogle ScholarPubMed

Brokaw, C. J. (1975 b). Cross bridge behavior in a sliding filament model for flagella. In Molecules and Cell Movement (ed. Inoue, S. and Stephens, R. E.), pp. 165–179. N.Y.: Raven Press.Google Scholar

Brokaw, C. J. (1975 c). Moleuclar mechanism for oscillation in flagella and muscle. Proc. natn. Acad. Sci. U.S.A. 72, 3102–3106.CrossRefGoogle Scholar

Brokaw, C. J. (1976). Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross-bridge model. Biophys. J. 16, 1029–1041.CrossRefGoogle ScholarPubMed

Brokaw, C. J. (1977). CO2-inhibition of the amplitude of bending of tritondemembranated sea urchin sperm flagella. J. exp. Biol. 71, 229–240.CrossRefGoogle Scholar

Brokaw, C. J. (1978 a). Control of microtubular sliding in sea urchin sperm flagella by calcium and the mechanism of flagellar oscillation. Abstracts, U.S.—Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 18.Google Scholar

Brokaw, C. J. (1978 b). Flagellar oscillation and bilateral arrest in Ciona spermatozoa. Abstracts, 6th Int. Cong. Biophys., Kyoto, p. 313.Google Scholar

Brokaw, C. J. & Benedict, B. (1968 a). Mechanochemical coupling in flagella. I. Movement-dependent dephosphorylation of ATP by glycerinated spermatozoa. Archs Biochem. Biophys. 125, 770–778.CrossRefGoogle ScholarPubMed

Brokaw, C. J. & Benedict, B. (1968 b). Mechanochemical coupling in flagella. II. Effects of viscosity and thiourea on metabolism and motility of Ciona spermatozoa. J. gen. Physiol. 52, 283–299.CrossRefGoogle ScholarPubMed

Brokaw, C. J. & Benedict, B. (1971). Mechanochemical coupling in flagella. III. Effects of some uncoupling agents on properties of the flagellar ATPase. Archs Biochem. Biophys. 142, 91–100.CrossRefGoogle Scholar

Brokaw, C. J. & Gibbons, I. R. (1973). Localized activation of bending in proximal, medial, and distal regions of sea-urchin sperm flagella. J. Cell Sci. 13, 1–10.CrossRefGoogle ScholarPubMed

Brokaw, C. J. & Gibbons, I. R. (1975). Mechanisms of movement in flagella and cilia. In Swimming and Flying in Nature (ed. Wu, T. Y., Brokaw, C. J. and Brennen, C.), pp. 89–126. Plenum.Google Scholar

Brokaw, C. J., Josslin, R. & Bobrow, L. (1974). Calcium regulation of flagellar beat symmetry in reactivated sea urchin sperm. Biochem. biophys. Res. Commun. 58, 795–800.CrossRefGoogle Scholar

Brokaw, C. J. & Rintala, D. R. (1975). Computer simulation of flagellar movement. III. Models incorporating cross bridge kinetics. J. Mechanochem. & Cell Motility 3, 77–86.Google ScholarPubMed

Brokaw, C. J. & Rintala, D. (1977). Computer simulation of flagellar movement. V. Oscillation of cross-bridge models with an ATP-concentration-dependent rate function. J. Mechanochem. & Cell Motility 4, 205–232.Google ScholarPubMed

Brokaw, C. J. & Simonick, T. F. (1976). CO2 regulation of the amplitude of flagellar bending. In Cell Motility (ed. Goldman, R., Pollard, T. and Rosenbaum, T.), pp. 933–940. Cold Spring Harbor Laboratory, New York.Google Scholar

Brokaw, C. J. & Simonick, T. F. (1977 a). Mechanochemical coupling in flagella. V. Effects of viscosity on movement and ATP-dephosphorylation of triton-demembranated sea-urchin spermatozoa. J. Cell Sci. 23, 227–241.CrossRefGoogle ScholarPubMed

Brokaw, C. J. & Simonick, T. F. (1977 b). Motility of triton-demembranated sea urchin sperm flagella during digestion by trypsin. J. Cell Biol. 75, 650–665.CrossRefGoogle ScholarPubMed

Browning, J. L. & Nelson, D. L. (1976). Biochemical studies of the excitable membrane of Paramecium aurelia. I. 45Ca++ fluxes across the resting and excited membrane. Biochim. biophys. Acta 448, 338–351.CrossRefGoogle Scholar

Byrne, B. J. & Byrne, B. C. (1978 a). An ultrastructural correlate of the membrane mutant ‘Paranoiae’ in Paramecium. Science, N.Y. 199, 1091–1093.CrossRefGoogle ScholarPubMed

Byrne, B. J. & Byrne, B. C. 1978 b). Behavior and the excitable membrane in Paramecium. CRC Critical Rev. Microbiol., 09 pp. 53–108.Google Scholar

Cantley, L. C., Cantley, L. G. & Josephson, L. (1978). A characterization of vanadate interactions with the (Na, K)-ATPase. Mechanistic and regulatory implications. J. biol. Chem. 253, 7361–7368.CrossRefGoogle ScholarPubMed

Chasey, D. (1972). Further observations on the ultrastructure of cilia from Tetrahymena pyriformis. Expl Cell Res. 74, 471–479.CrossRefGoogle ScholarPubMed

Chen, L. L. & Haines, T. H. (1976). The flagellar membranes of Ochromonas danica. Isolation and electrophoretic analysis of the flagellar membrane, axonemes, and mastigonemes. J. biol. Chem. 251, 1828–1834.CrossRefGoogle ScholarPubMed

Chen, L. L., Pousada, M. & Haines, T. H. (1976). The flageliar membrane of Ochromonas danica. Lipid composition. J. biol. Chem. 251, 1835–1842.CrossRefGoogle ScholarPubMed

Childress, S. (1977). Mechanics of Swimming and Flying. Courant Institute of Mathematical Science, New York University.Google Scholar

Cosson, M. P. & Gibbons, I. R. (1978). Properties of sea urchin sperm flagella in which the bending waves have been preserved by treatment with mono- and bi-functional maleimide derivatives. J. Cell Biol. 79, 286a.Google Scholar

Costello, D. P. (1973 a). A new theory of the mechanics of ciliary and flagellar motility. I. Supporting observations. Biol. Bull. mar. biol. lab., Woods Hole 145, 279–291.CrossRefGoogle ScholarPubMed

Costello, D. P. (1973 b). A new theory on the mechanics of ciliary and flagellar motility. II. Theoretical considerations. Biol. Bull. mar. biol. Lab., Woods Hole 145, 292–309.CrossRefGoogle ScholarPubMed

Costello, D. P., Henley, C. & Ault, C. R. (1969). Microtubules in spermatozoa of Childia (Turbellaria, Acoela) revealed by negative staining. Science, N.Y. 163, 678–679.CrossRefGoogle ScholarPubMed

DeLa, Torre J. G. & Bloomfield, V. A. (1977). Hydrodynamic theory of swimming of flagellated microorganisms. Biophys. J. 20, 49–67.Google Scholar

Doughty, M. J. (1978 a). Ciliary Ca++-ATPase from the excitable membrane of Paramecium. Some properties and purification by affinity chromatography. Comp. Biochem. Physiol. 60 B, 339–345.Google Scholar

Doughty, M. J. (1978 b). Control of ciliary activity in Paramecium. I. Modification of K+-induced ciliary reversal by temperature and Ruthenium Red. Comp. Biochem. Physiol. 61 C, 369–373.Google ScholarPubMed

Douglas, G. J. & Holwill, M. E. J. (1972). Behavior of flagella isolated from Crithidia oncopelti. J. Mechanochem. Cell Motility 1, 213–223.Google ScholarPubMed

Dute, R. & Kung, C. (1978). Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia. J. Cell Biol. 78, 451–464.CrossRefGoogle ScholarPubMed

Eisenberg, E. & Hill, T. L. (1978). A cross-bridge model of muscle contraction. Prog. Biophys. & molec. Biol. 33, 55–82.CrossRefGoogle ScholarPubMed

Fukushima, Y. & Post, R. L. (1978). Binding of divalent cation to phosphoenzyme of sodium- and potassium-transport adenosine triphosphatase. J. biol. Chem. 253, 6853–6862.CrossRefGoogle ScholarPubMed

Gibbons, B. (1978). Potent inhibition of dynein ATPase and of the motility of cilia and sperm flagella by vanadate. Transient waveforms during intermittent swimming in live sea urchin sperm. Abstracts, U.S.—Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 14.Google Scholar

Gibbons, B. H. & Gibbons, I. R. (1972). Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100. J. Cell Biol. 54, 75–97.CrossRefGoogle ScholarPubMed

Gibbons, B. H. & Gibbons, I. R. (1973). The effect of partial extraction of dynein arms on the movement of reactivated sea urchin sperm. J. Cell Sci. 13, 337–357.CrossRefGoogle ScholarPubMed

Gibbons, B. H. & Gibbons, I. R. (1974). Properties of flagellar ‘rigor waves’ formed by abrupt removal of adenosine triphosphate from actively swimming sea urchin sperm. J. Cell Biol. 63, 970–985.CrossRefGoogle ScholarPubMed

Gibbons, B. H. & Gibbons, I. R. (1978). Formation of flagellar rigor waves by abrupt removal of Mg++ from actively swimming sea urchin sperm, and the lack of inhibition by vanadate of the relaxation of rigor waves by MgATP. J. Cell Biol. 79, 285 a.Google Scholar

Gibbons, B. H. & Gibbons, I. R. (1979). Relationship between the latent adenosine triphosphatase state of Dynein I and its ability to recombine functionally with KC1-extracted sea urchin sperm flagella. J. biol. Chem. 254, 197–201.CrossRefGoogle Scholar

Gibbons, I. R. (1963). Studies on the protein components of cilia from Tetrahymena pyriformis. Proc. natn. Acad. Sci. U.S.A. 50, 1002–1010.CrossRefGoogle ScholarPubMed

Gibbons, L R. (1965 b). An effect of adenosine triphosphate on the light scattered by suspensions of cilia. J. Cell Biol. 26, 707–712.CrossRefGoogle ScholarPubMed

Gibbons, I. R. (1966). Studies on the adenosine triphosphatase activity of 14S and 30S dynein from cilia of Tetrahymena. J. biol. Chem. 241, 5590–5596.CrossRefGoogle Scholar

Gibbons, I. R. (1975). The molecular basis of flagellar motility in sea urchin spermatozoa. In Molecular and Cell Movement (ed. Inoue, S. and Stephens, R. E.), pp. 207–231. New York: Raven.Google Scholar

Gibbons, I. R. (1978). Structure and function of dynein i in sea urchin sperm flagella. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 22.Google Scholar

Gibbons, I. R. & Fronk, E. (1972). Some properties of bound and soluble dynein from sea urchin sperm flagella. J. Cell Biol. 54, 365–381.CrossRefGoogle ScholarPubMed

Gibbons, I. R. & Fronk, E. (1979). A latent adenosine triphosphatase form of Dynein i from sea urchin sperm flagella. J. biol. Chem. 254, 187–196.CrossRefGoogle ScholarPubMed

Gibbons, I. R. & Rowe, A. J. (1965). Dynein: A protein with adenosine triphosphatase activity from cilia. Science, N.Y. 149, 424–425.CrossRefGoogle ScholarPubMed

Gibbons, I. R., Fronk, E., Gibbons, N. H. & Ogawa, K. (1976). Multiple forms of dynein in sea urchin sperm flagella. In Cell Motility, Cold Spring Harbor Conferences on Cell Proliferation, 3, 915–932.Google Scholar

Gibbons, I. R., Cosson, M. P., Evans, J. A., Gibbons, B. H., Houck, B., Martinson, K. H., Sale, W. S. & Tang, W. Y. (1978). Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc. natn. Acad. Sci. U.S.A. 75, 2220–2224.CrossRefGoogle ScholarPubMed

Gilula, N. B. & Satir, P. (1972). The ciliary necklace. A ciliary membrane specialization. J. Cell Biol. 53, 494–509.CrossRefGoogle ScholarPubMed

Goldstein, S. F. (1977). Asymmetric wave forms in echinoderm sperm flagella. J. exp. Biol. 71, 157–170.CrossRefGoogle Scholar

Goldstein, S. F. (1978). Starting transients in sea urchin sperm flagella. J. Cell Biol. 80, 61–68.CrossRefGoogle Scholar

Goldstein, S. F., Besse, C. & Schrevel, J. (1978). Structure and physiology of a ‘6+0’ flagellum. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 21.Google Scholar

Goldstein, S. F., Holwill, M. E. J. & Silvester, N. R. (1970). The effects of laser microbeam irradiation on the flagellum of Crithidia (Strigomonas) oncopelti. J. exp. Biol. 53, 410–419.CrossRefGoogle ScholarPubMed

Hata, H., Yano, Y., Mohri, T., Mohri, H. & Miki-Nomoura, T. (1978).ATP-driven tubule extrusion from axonemes without outer dynein arms of sea urchin sperm flagella. Abstracts, 6th Int. Biophys. Cong., Kyoto, p. 313.Google Scholar

Hauser, D. C. R., Petrylak, D., Singer, G., & Levandowsky, M. (1978). Calcium-dependent sensory-motor response of a marine dinoflagellate to CO2. Nature, Lond. 273, 230–231.CrossRefGoogle Scholar

Hayashi, M. (1974). Kinetic analysis of axoneme and dynein ATPase from sea urchin sperm. Archs Biochem. Biophys. 165, 288–296.CrossRefGoogle ScholarPubMed

Hayashi, M. & Higashi-Fujime, S. (1972). Binding and adenosine triphos-phatase of flagellar proteins from sea urchin sperm. Biochemistry, N.Y. 11, 2977–2982.CrossRefGoogle ScholarPubMed

Henley, C. (1970). Changes in microtubules of cilia and flagella following negative staining with phosphotungstic acid. Biol. Bull. mar. biol. lab., Woods Hole 139, 265–276.CrossRefGoogle ScholarPubMed

Henley, C., Costello, D. P., Thomas, M. B. & Newton, W. D. (1969).The 9+1 pattern of microtubules in spermatozoa of Mesostoma (Platyhelminthes, Turbellaria). Proc. natn. Acad. Sci. U.S.A. 64, 849–856.CrossRefGoogle Scholar

Hill, T. (1974). Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog. Biophys. & molec. Biol. 28, 267–340.CrossRefGoogle ScholarPubMed

Hines, M. & Blum, J. J. (1978). Bend propagation in flagella. I. Derivation of equations of motion and their simulation. Biophys. J. 23, 41–57.CrossRefGoogle ScholarPubMed

Hines, M. & Blum, J. J. (1979) Bend propagation in flagella. II. Incorporation of dynein cross-bridge kinetics into the equations of motion. Biophys. J. 25 (in the Press).CrossRefGoogle ScholarPubMed

Hiramoto, Y. & Baba, S. A. (1978). A quantitative analysis of flagellar movement in echinoderm spermatozoa. J. exp. Biol. 76, 85–104.CrossRefGoogle Scholar

Holwill, M. E. J. (1965). The motion of Strigomonas oncopelti. J. exp. Biol. 42, 125–137.CrossRefGoogle Scholar

Holwill, M. E. J. (1969). Kinetic studies of the flagellar movement of sea urchin spermatozoa. J. exp. Biol. 50, 203–222.CrossRefGoogle ScholarPubMed

Holwill, M. E. J. & McGregor, J. L. (1974). Micromanipulation of the flagellum of Crithidia oncopelti. I. Mechanical effects. J. exp. Biol. 60, 437–444.CrossRefGoogle ScholarPubMed

Holwill, M. E. J. & McGregor, J. L. (1976). Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti. J. exp. Biol. 65, 222–242.CrossRefGoogle ScholarPubMed

Hood, R. D., Watson, O. F., Deason, T. R. & Benton, C. L. B. Jr, (1972). Ultrastructure of scorpion spermatozoa with atypical axonemes. Cytobios 5, 167–177.Google ScholarPubMed

Hoshino, M. (1975). Dissociation of Tetrahymena 30S dynein into 14S subunit by sonication. Biochim. biophys. Acta 403, 544–553.CrossRefGoogle Scholar

Hotani, H. (1978). Visualization of a transformation process in bacterial flagellar filaments in alcohol. Abstracts, 6th Int. Biophys. Congress, Kyoto, p. 241.Google Scholar

Hyams, J. S. & Borisy, G. G. (1978). Isolated flagellar apparatus of Chlamydomonas: Characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J. Cell Sci. 33, 235–354.CrossRefGoogle ScholarPubMed

Hyams, J. & Chasey, D. (1974). Aspects of the flagellar apparatus and associated microtubules in a marine alga. Expl Cell Res. 84, 381–387.CrossRefGoogle Scholar

Huang, B., Piperno, G. & Luck, D. J. L. (1978). Flagellar mutants of Chlamydomonas defective for dynein arms. J. Cell Biol. 79, 286a.Google Scholar

Ito, S. (1966). Movement and structure of louse spermatozoa. J. Cell Biol. 31, 128 A.Google Scholar

Johnson, R. E. & Brokaw, C. J. (1979). Flagellar hydrodynamics: A comparison between resistive force theory and slender body theory. Biophys. J. 25, 113–128.CrossRefGoogle ScholarPubMed

Kamiya, R., & Asakura, S. (1976). Helical transformations of Salmonella flagella in vitro. J. molec. Biol. 106, 167–186.CrossRefGoogle ScholarPubMed

Keller, S. R. (1977). Mechanics of flagellar motion with an application to a conical spiral flagellate. J. theor. Biol. 68, 73–94.CrossRefGoogle ScholarPubMed

Kincaid, H. L. Jr, Gibbons, B. H. & Gibbons, I. R. (1973). The salt-extractable fraction of dynein from sea urchin sperm flagella: An analysis by gel electrophoresis and by adenosine triphosphatase activity. J. Supramol. Struct. 1, 461–470.CrossRefGoogle ScholarPubMed

Kobayashi, T., Martensen, T., Nath, J. & Flavin, M. (1978). Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem. biophys. Res. Commun. 81, 1313–1318.CrossRefGoogle ScholarPubMed

Kuhn, H. J. (1978 a). Cross bridge slippage induced by the ATP analogue AMP-PNP and stretch in glycerol-extracted fibrillar muscle fibers. Biophys. Struct. & Mechanism 4, 159–168.CrossRefGoogle Scholar

Kuhn, H. J. (1978 b). Tension transients in fibrillar muscle fibers as affected by stretch-dependent binding of AMP-PNP: A teinochemical effect? Biophys. Struct. & Mechanism 4, 209–222.CrossRefGoogle ScholarPubMed

Kung, C. (1978). The use of mutants in the studies of ciliary membrane structure and function. Abstracts, U.S.–Japan Science Seminar ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 37.Google Scholar

Langford, G. M. (1978). Microtubules have a 96 nm axial repeat in the absence of accessory proteins. J. Cell Biol. 79, 289a.Google Scholar

Lee, W. J. & Verdugo, P. (1978). Ciliary activity by laser light-scattering spectroscopy. Ann. Biomed. Eng. 6, 248–259.Google Scholar

Linck, R. W. (1979). Advances in the ultrastructural analysis of the sperm flagellar axoneme. In International Symposium on the Spermatozoon: Membrane, Motility, and Maturation (ed. Fawcett, D. W. and Bedford, J. M.). Baltimore: Urban and Schwartzenberg.Google Scholar

Linck, R. & Langevin, G. (1978). Molecular composition and structure of the flagellar microtubule apparatus. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 30.Google Scholar

Lindemann, C. B. (1978). A cAMP-induced increase in the motility of demembranated bull sperm models. Cell 13, 9–18.CrossRefGoogle ScholarPubMed

Lindemann, C. B. & Gibbons, I. R. (1975). Adenosine triphosphate-induced motility and sliding of filaments in mammalian sperm extracted with Triton X-100. J. Cell Biol. 65, 147–162.CrossRefGoogle ScholarPubMed

Lindemann, C. B. & Rikmenspoel, R. (1972). Sperm flagellar motion maintained by ADP. Expl Cell Res. 73, 255–258.CrossRefGoogle ScholarPubMed

Lindemann, C. B., Rudd, W. G. & Rikmenspoel, R. (1973). The stiffness of the flagella of impaled bull sperm. Biophys. J. 13, 437–448.CrossRefGoogle ScholarPubMed

Liron, N. (1978). Fluid transport by cilia between parallel plates. J. Fluid Mech. 86, 705–726.CrossRefGoogle Scholar

Liron, N. & Mochon, S. (1976 a). Stokes flow for a stokeslet between two parallel flat plates. Jnl. Eng. Math. 10, 287–303.CrossRefGoogle Scholar

Liron, N. & Mochon, S. (1976 b). The discrete-cilia approach to propulsion of ciliated microorganisms. J. Fluid Mech. 75, 593–607.CrossRefGoogle Scholar

Liron, N. & Shahar, R. (1978). Stokes flow to a stokeslet in a pipe. J. Fluid Mech. 86, 727–744.CrossRefGoogle Scholar

Lubliner, J. & Blum, J. J. (1977). Analysis of bend initiation in cilia according to a sliding filament model. J. theor. Biol. 69, 87–99.CrossRefGoogle ScholarPubMed

Luck, D., Piperno, G., Huang, B., Ramanis, Z. & Adams, G. M. W. (1978). Genetical and biochemical analysis of axonemal structure in Chlamydomonas rheinhardtii. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 24.Google Scholar

Mabuchi, M. (1977). Biochemistry of dynein and its role in cell motility.In Horizons in Biochemistry and Biophysics, vol. 5. Reading, Mass.: Addison-Wesley. Reading, Mass. (In the Press.)Google Scholar

Mabuchi, M. & Shimizu, T. (1974). Electrophoretic studies on dyneins from Tetrahymena cilia. J. Biochem. 76, 991–999.Google ScholarPubMed

Mabuchi, M., Shimizu, T. & Mabuchi, Y. (1976). A biochemical study of flagellar dynein from starfish spermatozoa: Protein components of the arm structure. Archs Biochem. Biophys. 176, 564–576.CrossRefGoogle ScholarPubMed

Machemer, H. (1976). Interactions of membrane potential and cations in regulation of ciliary activity in Paramecium. J. exp. Biol. 65, 427–448.CrossRefGoogle ScholarPubMed

Machemer, H., de, Peyer I. & Ogura, A. (1978). Ca-controlled senso-motory coupling in ciliates. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 32.Google Scholar

Marchand, B. & Mattei, X. (1977). Un type nouveau de structure flagellaire. Type 9+n. J. Cell Biol. 72, 707–713.CrossRefGoogle ScholarPubMed

Masuda, H., Ogawa, K. & Miki-Nomoura, T. (1978). Inhibition of ATP-drive tubule extrusion of trypsin-treted axonemes. Expl Cell Res. 115 435–439.CrossRefGoogle Scholar

Miki-Nomoura, T. & Kamiya, R. (1978). Conformational change in the outer doublet microtubules from sea urchin sperm flagella. Abstracts, 6th Int. Biophys. Cong., Kyoto, p. 167.Google Scholar

Mitchell, D. R. & Warner, F. D. (1978). A- and B-tubule binding properties of ciliary dynein arms. J. Cell Biol. 79, 293a.Google Scholar

Mohri, H. (1976). The function of tubulin in motile system. Biochim. biophys. Acta 456, 85–127.CrossRefGoogle Scholar

Mohri, H. S., Hasegawa, S., Yamamoto, M. & Murakami, S. (1969). Flagellar adenosinetriphosphatase dynein from sea-urchin spermatozoa. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo (Biol. Part) 19, 195–217.Google Scholar

Muhlrad, A. & Afolayan, A. (1975). Studies on the amino groups of myosin ATPase. II. Localization of the amino groups. J. Mεchanochem. & Cell Motility 3, 99–102.Google ScholarPubMed

Munn, E. A. & Barnes, H. (1970). The fine structure of the spermatozoa of some cirripedes. Ecology 4, 261–268.Google Scholar

Murakami, A. & Takahashi, K. (1975). The role of Ca++ in the control of ciliary movement in Mytilus. II. The effects of calcium ionophores X537A and A23187 on the lateral gill cilia. J. Fac. Sci. Tokyo Univ.Sect. IV, 13, 251–256.Google Scholar

Murofushi, H. (1974). Protein kinases in Tetrahymena cilia. II. Partial purification and characterization of adenosine 3′, 5′ -monophosphate-dependent and guanosine 3′,5′-monophosphate-dependent protein kinases. Biochim. biophys. Acta 370, 130–139.CrossRefGoogle ScholarPubMed

Naiton, Y. (1978). Bioelectric control of ciliary movement. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 31.Google Scholar

Naitoh, Y. & Eckert, R. (1974). The control of ciliary activity in protozoa. In Cilia and Flagella (ed. Sleigh, M. A.), pp. 305–352. New York:Academic Press.Google Scholar

Naitoh, Y. & Kaneko, H. (1972). Reactivated Triton-extracted models of Paramecium. Modification of ciliary movement by calcium ions. Science, N.Y. 176, 523–524.CrossRefGoogle Scholar

Nakamura, S. & Kamiya, R. (1978). Bending motion in split flagella of Chlamydomonas. Cell Struct. & Funct. 3, 141–144.CrossRefGoogle Scholar

Nakamura, S. & Masuyama, E. (1978). Studies on the initial phase of dynein ATPase activity. Biochim. biophys. Acta 481, 660–666.CrossRefGoogle Scholar

Nichols, K. M. & Rikmenspoel, R. (1978). Effects of the microinjection of Mg++, Mn++, Ca++, and K+ on light induced Euglena flagellar reversal. J. Cell Biol. 79, 277a.Google Scholar

Ogawa, K. (1978). The paired arms projecting from the no. 5 doublet micro-tubules. Abstracts, U.S.–Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 26.Google Scholar

Ogawa, K. & Gibbons, I. R. (1976). Dynein 2. A new adenosine triphosphatase from sea urchin sperm flagella. J. biol. Chem. 251, 5793–5801.CrossRefGoogle ScholarPubMed

Ogawa, K. & Mohri, H. (1972). Studies on flagellar ATPase from sea urchin spermatozoa. I. Purification and some properties of the enzyme. Biochim. biophys. Acta 256, 142–155.CrossRefGoogle ScholarPubMed

Ogawa, K. & Mohri, H. (1975). Preparation of antiserum against a tryptic fragment (Fragment A) of dynein and an immunological approach to the sub-unit composition of dynein. J. biol. Chem. 250, 6476–6483.CrossRefGoogle Scholar

Ogawa, K., Mohri, T. & Mohri, H. (1977 a). Identification of dynein as the outer arms sea urchin sperm axonemes. Proc. natn. Acad. Sci. U.S.A. 74, 5006–5010.CrossRefGoogle ScholarPubMed

Ogawa, K., Asai, D. J. & Brokaw, C. J. (1977 b). Properties of an antiserum against native dynein i from sea urchin sperm flagella. J. Cell Biol. 73, 182–192.CrossRefGoogle ScholarPubMed

Ogura, A. & Takahashi, K. (1976). Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature, Lond. 264, 170–172.CrossRefGoogle ScholarPubMed

Okuno, M. (1979). Direct measurement of the stiffness of echinoderm sperm flagella. Biophys. J. 25, 208a.Google Scholar

Okuno, M. & Hiramoto, Y. (1979). Direct measurements of the stiffness of echinoderm sperm flagella. (In the Press.)CrossRefGoogle Scholar

Olson, G. E. & Linck, R. W. (1977). Observations on the structural components of flagellar axonemes and central pair microtubules from rat sperm. J. Ultrastruct. Res. 61, 21–43.CrossRefGoogle ScholarPubMed

Otokawa, M. (1972). Stimulation of ATPase activity of 30-S dynein with microtubular protein. Biochim. biophys. Acta 275, 464–466.CrossRefGoogle ScholarPubMed

Otokawa, M. (1973). Inhibitory effect of inorganic phosphate on the axonemal ATPase of ciliary from Tetrahymena pyriformis. Biochim. biophys. Acta 292, 834–836.CrossRefGoogle Scholar

Peningroth, S. M. & Witman, G. B. (1978). Effects of adenylylimidodiphosphate, a nonhydrolyzable adenosine triphosphate analog, on reactivated and rigor wave sea urchin sperm. J. Cell Biol. 79, 827–832.CrossRefGoogle Scholar

Phillips, D. M. (1974). Structural variants in invertebrate sperm flagella and their relationship to motility. In Cilia and Flagella (ed. Sleigh, M. A.), pp. 379–402. New York: Academic Press.Google Scholar

Piperno, G. & Luck, D. J. L. (1976). Phosphorylation of axonemal proteins in Chlamydomonas reinhardtii. J. biol. Chem. 251, 2161–2167.CrossRefGoogle ScholarPubMed

Piperno, G. & Luck, D. J. L. (1978). Purification of two dyneins from axonemes of Chlamydomonas reinhardtii. J. Cell Biol. 79, 296a.Google Scholar

Piperno, G., Huang, B. & Luck, D. J. L. (1977). Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii. Proc. natn. Acad. Sci. U.S.A. 74, 1600–1604.CrossRefGoogle ScholarPubMed

Plattner, H. (1975). Ciliary granule plaques: Membrane-intercalated particle aggregates associated with Ca++-binding sites in Paramecium. J. Cell Sci. 18, 257–269.CrossRefGoogle Scholar

Prensier, G. (1973). Formation de flagelle atypiquc, sans structure centriolaire basal, an cours de Ia gamétogenèse chez Diplauxis hatti. J. Microscopie 17, 88a.Google Scholar

Raff, E. C. & Blum, J. J. (1966). The effects of adenosine triphosphate and related compounds on some hydrodynamic properties of glycerinated cilia. J. Cell Biol. 31, 445–453.CrossRefGoogle ScholarPubMed

Raff, E. C. & Blum, J. J. (1968). A possible role for adenylate kinase in cilia: Concentration profiles in a geometrically constrained dual enzyme system. J. theor. Biol. 18, 53–71.CrossRefGoogle Scholar

Raff, E. C. & Blum, J. J. (1969 a). The fractionation of glycerinated cilia by adenosine triphosphate. J. biol. Chem. 244, 366–376.CrossRefGoogle ScholarPubMed

Raff, E. C. & Blum, J. J. (1969 b). Some properties of a model assay for ciliary contractility. J. Cell Biol. 42, 831–834.CrossRefGoogle Scholar

Rikmenspoel, R. (1976). Contractile agents in the cilia of Paramecium, Opalina, Mytilus, and Phragmatopoma. Biophys. J. 16, 445–470.CrossRefGoogle Scholar

Rikmenspoel, R., Orris, S. E. & O'Day, P. (1977). Infrared laser damage to ciliary motion in Phragmatopoma. J. Cell Sci. 24, 361–371.CrossRefGoogle ScholarPubMed

Robison, W. G. (1970). Unusual arrangements of microtubules in relation to mechanisms of sperm movement. In Comparative Spermatology (ed. Baccetti, B.), pp. 311–320. New York: Academic Press.Google Scholar

Rogalski, A. & Bouck, G. B. (1978). Flagellar membrane glycoprotein does not extend over the cell surface in Euglena. J. Cell Biol. 79, 281 a.Google Scholar

Saiki, M. & Hiramoto, Y. (1975). Control of ciliary activity in Paramecium by intracellular injection of calcium buffers. Cell Struct. & Funct. 1, 33–41.CrossRefGoogle Scholar

Sale, W. S. & Satir, P. (1977). Direction of active sliding of microtubules in Tetrahymena cilia. Proc. natn. Acad. Sci. U.S.A. 74, 2045–2049.CrossRefGoogle ScholarPubMed

Sano, M. (1976). Subcellular localization of guanylate cyclase and 3′,5′- cyclic nucleotide phosphodiesterases in sea urchin sperm. Biochim. biophys. Acta 248, 525–531.CrossRefGoogle Scholar

Stair, P. (1974) The present status of the sliding microtubule model of ciliary motion. In Cilia and Flagella (ed. Sleigh, M. A.), pp. 131–142. New York: Academic Press.Google Scholar

Shimizu, T. (1975). Recombination of ciliary dynein of Tetrahymena with outer fibers. J. Biochem. 78, 41–49.Google ScholarPubMed

Shimizu, T. & Kimura, I. (1974). Effects of _N_-ethylmaleimide on dynein adenosinetriphosphatase activity and its recombining ability with outer fibers. J. Biochem. 76, 1001–1008.Google ScholarPubMed

Shimizu, T. & Kimura, I. (1977). Effects of adenosine triphosphate on _N_-ethymaleimide-induced modification of 30S dynein from Tetrahymena cilia. J. Biochem. 82, 165–173.CrossRefGoogle ScholarPubMed

Shimizu, T., Kaji, K. & Kimura, I. (1977). Effects of _p_–chloromercuri-phenylsulfonate on ciliary dynein adenosine triphosphatase activity of Tetrahymena pyriformis. J. Biochem. 82, 1145–1153.CrossRefGoogle Scholar

Shingyoji, C., Murakami, A. & Takahashi, K. (1977). Local reactivation of Triton-extracted flagella by iontophoretic application of ATP. Nature, Lond. 265, 269–270.CrossRefGoogle ScholarPubMed

Sleigh, M. A. (1978). Fluid propulsion by cilia and flagella. In Comparative Physiology: Water, Ions, and Fluid Mechanics (ed. Schmidt-Nielsen, K., Bolis, L., and Maddrell, S. H.), pp. 255–266. Cambridge University Press.Google Scholar

Smith, J. D., Snyder, W. R. & Law, J. H. (1970). Phosphonolipids in Tetrahymena cilia. Biochem. biophys. Res. Commun. 39, 1163–1169.CrossRefGoogle ScholarPubMed

Solter, K. M. & Gibor, A. (1978). The relationship between tonicity and flagellar length. Nature, Lond. 275, 651–652.CrossRefGoogle ScholarPubMed

Stephens, R. E. (1970). Isolation of nexin – the linkage protein responsible for maintenance of the nine-fold configuration of flagellar axonemes. Biol. Bull. mar. biol. Lab., Woods Hole 139, 438.Google Scholar

Stephens, R. (1978). Primary structural differences among tubulin subunits from flagella, cilia, and the cytoplasm. Biochemistry, N.Y. 17, 2882–2891.CrossRefGoogle ScholarPubMed

Stephens, R. E. & Levine, E. E. (1970). Some enzymatic properties of axonemes from the cilia of Pecten irradians. J. Cell Biol. 46, 416–421.CrossRefGoogle ScholarPubMed

Sturgess, J. M., Chao, J., Wong, J., Aspin, N. & Turner, J. A. P. (1979). Cilia with defective radial spokes. New Engl. J. Med. 300, 53–56.CrossRefGoogle ScholarPubMed

Summers, K. E. & Gibbons, I. R. (1971). Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. natn. Acad. Sci. U.S.A. 68, 3092–3096.CrossRefGoogle ScholarPubMed

Takahashi, M. & Tonomura, Y. (1978). Binding of 30S dynein with the B-tubule of the outer doublet of axoneme from Tetrahymena pyriformis and adenosine triphosphate-induced dissociation of the complex. J. Biochem. 84, 1339–1356.CrossRefGoogle ScholarPubMed

Tamblyn, T. M. & First, N. L. (1977). Caffeine-stimulated ATP-reactivated motility in a detergent-treated bovine sperm model. Archs. Biochem. Biophys. 181, 208–215.CrossRefGoogle Scholar

Tamm, S. L. & Horridge, G. A. (1970). The relation between the orientation of the central fibrils and the direction of beat in cilia of Opalina. Proc. R. Soc. B 175, 219–233.Google Scholar

Thomas, M. B. (1970). Transitions between helical and protofibrillar configurations in doublet and singlet microtubules in spermatozoa of Stylochus zebra (Turbellaria, Polycladida). Biol. Bull. mar. biol. lab., Woods Hole 138, 219–234.CrossRefGoogle Scholar

Thompson, G. A. Jr, Bambery, R. J. & Nozawa, Y. (1971). Further studies of the lipid composition and biochemical properties of Tetrahymena pyriformis membrane systems. Biochemistry, N.Y. 10, 4441–4447.CrossRefGoogle ScholarPubMed

Toyotama, H. & Nakaoka, Y. (1978). Mg-dependent ciliary reversal in Paramecium. Abstracts, 6th Int. Biophys. Cong., Kyoto, p. 242.Google Scholar

Tulloch, G. S. & Hershenov, B. R. (1967). Fine structure of platyhelminth sperm tails. Nature, Lond. 213, 299–300.CrossRefGoogle ScholarPubMed

Van, Deurs B. (1973). Axonemal 12+0 pattern in the flagellum of the motile spermatozoa of Nymphon leptocheles. J. Ultrastruct. Res. 42, 594–598.Google Scholar

Wais, J. & Stair, P. (1979). Effect of vanadate on gill cilia: Switching mechanisms in ciliary beat. Biophys. J. 25, 208a.Google Scholar

Walz, B. (1975). Modified ciliary structures in receptor cells of Macrobiotus Hufelandi (Tardigrada). Cytobiol. 11, 181–185.Google Scholar

Warner, F. D. (1974). The fine structure of the ciliary and fiagellar axoneme. In Cilia and Flagella (ed. Sleigh, M. A.), pp. 11–37. New York: Academic Press.Google Scholar

Warner, F. D. (1976 b). Cross-bridge mechanism in ciliary motility: The sliding-bending conversion. In Cell Motility, Cold Spring Harbor Conferences on Cell Proliferation, 3, 891–913.Google Scholar

Warner, F. D. (1978). Cation-induced attachment of ciliary dynein crossbridge. J. Cell Biol. 77, R19–R26.CrossRefGoogle Scholar

Warner, F. D. & Mitchell, D. R. (1978). Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J. Cell Biol. 76, 261–277.CrossRefGoogle ScholarPubMed

Warner, F. D. & Satir, P. (1974). The structural basis of ciliary bend formation: Radial spoke positional changes accompanying microtubule sliding. J. Cell Biol. 63, 35–63.CrossRefGoogle ScholarPubMed

Warner, F. D., Mitchell, D. R. & Perkins, C. R. (1977). Structural conformation of the ciliary ATPase dynein. J. molec. Biol. 114, 367–384.CrossRefGoogle ScholarPubMed

Watanabe, T. & Flavin, M. (1976). Nucleotide-metabolizing enzyme in Chiamydomonas flagella. J. biol. Chem. 251, 182–192.CrossRefGoogle Scholar

Witman, G. B. (1978). Composition and function of flagellar components in the alga Chlamydomonas. Abstracts, U.S.-Japan Science Seminar, ‘Mechanism and controls of prokaryotic and eukaryotic flagellar motility’, Hakone, p. 36.Google Scholar

Witman, G. B., Plummer, J. & Lamder, G. (1978). Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J. Cell Biol. 76, 729–747.CrossRefGoogle ScholarPubMed

Wolniak, S. M. & Cande, W. Z. (1978). Studies of ciliary beat of intact or demembranated bracken spermatozoids. J. Cell Biol. 79, 305a.Google Scholar

Wooley, D. M. (1977). Evidence for twisted plane undulation in golden hamster sperm tails. J. Cell Biol. 75, 851–865.CrossRefGoogle Scholar