Cloning of inv, a gene that controls left/right asymmetry and kidney development (original) (raw)

References

  1. Yokoyama, T.et al. Conserved cysteine to serine mutation in tyrosinase is responsible for the classical albino mutation in laboratory mice. Nucleic Acids Res. 18, 7293–7298 (1990).
    Article CAS Google Scholar
  2. Yokoyama, T.et al. Reversal of left–right asymmetry: a situs inversus mutation. Science 263, 679–681 (1993).
    Article ADS Google Scholar
  3. Meno, C.et al. Left–right asymmetric expression of the TGFβ-family member in mouse embryos. Nature 381, 151–155 (1996).
    Article ADS CAS Google Scholar
  4. Meno, C.et al. Two closely-related left–right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells 2, 513–524 (1997).
    Article CAS Google Scholar
  5. Collignon, J., Varlet, I. & Robertson, E. J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996).
    Article ADS CAS Google Scholar
  6. Lowe, L. A.et al. Conserved left–right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158–161 (1996).
    Article ADS CAS Google Scholar
  7. Lux, S. E., John, K. M. & Bennett, V. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344, 36–42 (1990).
    Article ADS CAS Google Scholar
  8. Bennett, V. Ankyrins, adapters between diverse plasma membrane proteins and the cytoplasm. J. Biol. Chem. 267, 8703–8706 (1992).
    CAS Google Scholar
  9. Levin, M., Johnson, R. L., Stern, C. D., Kuehn, M. & Tabin, C. Amolecular pathway determining left–right asymmetry in chick embryogenesis. Cell 82, 803–814 (1995).
    Article CAS Google Scholar
  10. Isaac, A., Sargent, M. G. & Cooke, J. Control of vertebrate left–right asymmetry by a snail-related zinc finger gene. Science 275, 1301–1304 (1997).
    Article CAS Google Scholar
  11. Yost, H. J. Regulation of vertebrate left–right asymmetries by extracellular matrix. Nature 357, 158–161 (1992).
    Article ADS CAS Google Scholar
  12. Hummel, K. P. & Chapman, D. B. Visceral inversion and associated anomalies in the mouse. J. Hered. 50, 9–13 (1959).
    Article Google Scholar
  13. Layton, W. M. Random determination of a developmental process. Reversal of normal visceral asymmetry in the mouse. J. Hered. 67, 336–338 (1976).
    Article Google Scholar
  14. Supp, D. M., Witte, D. P., Potter, S. S. & Brueckner, M. Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 389, 963–966 (1997).
    Article ADS CAS Google Scholar
  15. Yokoyama, T., Harrison, W., Elder, F. F. B. & Overbeek, P. A. in Developmental Mechanisms of Heart Disease (eds Clark, E. B. & Takao, A.) 513–520 (Futura, New York, (1995)).
    Google Scholar
  16. Larin, Z., Monaco, A. P. & Lehrach, H. Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc. Natl Acad. Sci. USA 88, 4123–4127 (1991).
    Article ADS CAS Google Scholar
  17. Klar, A. J. S. Amodel for specification of the left/right axis in vertebrates. Trends Genet. 10, 392–396 (1994).
    Article CAS Google Scholar
  18. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–200 (1991).
    Article CAS Google Scholar
  19. Peter, L. L. & Lux, S. E. Ankyrins: structure and function in normal cells and hereditary spherocytes. Semin. Hematol. 30, 85–118 (1993).
    Google Scholar
  20. Yochem, J., Weston, K. & Greenwald, I. The Caenorhabditis elegans lin -12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature 335, 547–550 (1988).
    Article ADS CAS Google Scholar
  21. Yochem, J. & Greenwald, I. glp -1 and lin -12, genes implicated in distinct cell–cell interactions in C. elegans, encode similar transmembrane proteins. Cell 58, 887–898 (1989).
    Article Google Scholar
  22. Andrews, B. J. & Herskowitz, I. The yeast SWI4 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription. Nature 342, 830–833 (1989).
    Article ADS CAS Google Scholar
  23. Aves, S. J., Durkacz, B. W., Carr, A. & Nurse, P. Cloning, sequencing and transcriptional control of the Schizosaccharomyces pombe cdc10 ‘start’ gene. EMBO J. 4, 457–463 (1985).
    Article CAS Google Scholar
  24. Breeden, L. & Nasmyth, K. Similarity between cell-cycle control genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature 329, 651–654 (1987).
    Article ADS CAS Google Scholar
  25. Hyatt, B. A., Lohr, J. A. & Yost, H. J. Initiation of vertebrate left–right axis formation by maternal Vg 1. Nature 385, 62–65 (1996).
    Article ADS Google Scholar
  26. Hyatt, B. A. & Yost, H. J. The left–right coordinator; the role of Vg1 in organizing left–right axis formation. Cell 93, 37–46 (1998).
    Article CAS Google Scholar
  27. Lawrence, J. B., Villnave, C. A. & Singer, R. H. Sensitive, high resolution chromatin and chromosome mapping in situ : presence and orientation of two closely integrated copies of EBV in a lymphoma cell line. Cell 52, 51–61 (1988).
    Article CAS Google Scholar
  28. Wilkinson, D. G. in In Situ Hybridization: A Practical Approach (ed. Wilkinson, D. G.) 75–84 (IRL, Oxford, (1992)).
    Google Scholar
  29. Hogan, B., Costantini, F. & Lacy, L. in Manipulating the Mouse Embryo: A Laboratory Manual 153–203 (Cold Spring Harb. Lab., Cold Spring Harbor, (1986)).
    Google Scholar

Download references