- Lledo, P. M., Zhang, X., Südhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399 ?403 (1998).
Article CAS PubMed Google Scholar
- Pfeffer, S. R. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol. 1, 17?22 ( 1999).
Article CAS Google Scholar
- Klenchin, V. A. & Martin, T. F. Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 82, 399?407 (2000).
Article CAS PubMed Google Scholar
- Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513?515 (1994).
Article CAS PubMed Google Scholar
- Peters, C. & Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575?580 ( 1998).
Article CAS PubMed Google Scholar
- Beckers, C. J. & Balch, W. E. Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus . J. Cell Biol. 108, 1245? 1256 (1989).
Article CAS PubMed Google Scholar
- Colombo, M. I., Beron, W. & Stahl, P. D. Calmodulin regulates endosome fusion. J. Biol. Chem. 272, 7707?7712 (1997).
Article CAS PubMed Google Scholar
- Bennett, M. K., Calakos, N. & Scheller, R. H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255?259 (1992).
Article CAS PubMed Google Scholar
- Oyler, G. A. et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell Biol. 109, 3039?3052 (1989).
Article CAS PubMed Google Scholar
- Trimble, W. S., Cowan, D. M. & Scheller, R. H. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc. Natl Acad. Sci. USA 85, 4538 ?4542 (1988).
Article CAS PubMed PubMed Central Google Scholar
- Baumert, M., Maycox, P. R., Navone, F., De Camilli, P. & Jahn, R. Synaptobrevin: an integral membrane protein of 18,000 Daltons present in small synaptic vesicles of rat brain . EMBO J. 8, 379?384 (1989).
Article CAS PubMed PubMed Central Google Scholar
- Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205?215 ( 1980).
Article CAS PubMed Google Scholar
- Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly?disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409?418 (1993).
Article PubMed Google Scholar
- Fasshauer, D., Sutton, R. B., Brünger, A. T. & Jahn, R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl Acad. Sci. USA 95, 15781?15786 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Jahn, R. & Südhof, T. C. Membrane fusion and exocytosis . Annu. Rev. Biochem. 68, 863? 911 (1999).
Article CAS PubMed Google Scholar
- Scales, S. J. et al. SNAREs contribute to the specificity of membrane fusion. Neuron 26, 457?464 ( 2000).This is the first study in which many cognate and non-cognate SNARE coils were tested for their ability to function in a specific cellular fusion step.
Article CAS PubMed Google Scholar
- Götte, M. & von Mollard, G. F. A new beat for the SNARE drum. Trends Cell Biol. 8, 215?218 (1998).
Article PubMed Google Scholar
- Parlati, F. et al. Topological restriction of SNARE-dependent membrane fusion . Nature 407, 194?198 (2000).
Article CAS PubMed Google Scholar
- McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153? 159 (2000).This is a thorough study of SNARE fusion specificity in the synthetic liposome fusion model.
Article CAS PubMed Google Scholar
- Fasshauer, D., Eliason, W. K., Brünger, A. T. & Jahn, R. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, 10354?10362 (1998).
Article CAS PubMed Google Scholar
- Poirier, M. A. et al. Protease resistance of syntaxin?SNAP-25?VAMP complexes. Implications for assembly and structure. J. Biol. Chem. 273, 11370?11377 (1998).
Article CAS PubMed Google Scholar
- Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051 ?5061 (1994).
Article CAS PubMed PubMed Central Google Scholar
- Yang, B. et al. SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem. 274, 5649?5653 (1999).
Article CAS PubMed Google Scholar
- Pevsner, J. et al. Specificity and regulation of a synaptic vesicle docking complex . Neuron 13, 353?361 (1994).
Article CAS PubMed Google Scholar
- Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523? 535 (1997).
Article CAS PubMed Google Scholar
- Lin, R. C. & Scheller, R. H. Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087?1094 (1997).
Article CAS PubMed Google Scholar
- Poirier, M. A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nature Struct. Biol. 5, 765? 769 (1998).
Article CAS PubMed Google Scholar
- Malhotra, V., Orci, L., Glick, B. S., Block, M. R. & Rothman, J. E. Role of an _N_-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54, 221? 227 (1988).
Article CAS PubMed Google Scholar
- Clary, D. O., Griff, I. C. & Rothman, J. E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61, 709?721 (1990).
Article CAS PubMed Google Scholar
- Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of _N_-ethylmaleimide-sensitive fusion protein. Cell 94, 525? 536 (1998).
Article CAS PubMed Google Scholar
- Yu, R. C., Hanson, P. I., Jahn, R. & Brünger, A. T. Structure of the ATP-dependent oligomerization domain of _N_-ethylmaleimide sensitive factor complexed with ATP. Nature Struct. Biol. 5, 803?811 (1998).
Article CAS PubMed Google Scholar
- Hohl, T. M. et al. Arrangement of subunits in 20S particles consisting of NSF, SNAPs, and SNARE complexes. Mol. Cell 2, 539?548 (1998).
Article CAS PubMed PubMed Central Google Scholar
- May, A. P., Misura, K. M., Whiteheart, S. W. & Weis, W. I. Crystal structure of the amino-terminal domain of _N_-ethylmaleimide-sensitive fusion protein. Nature Cell Biol. 1, 175 ?182 (1999).
Article CAS PubMed Google Scholar
- Yu, R. C., Jahn, R. & Brünger, A. T. NSF N-terminal domain crystal structure: models of NSF function. Mol. Cell 4, 97? 107 (1999).
Article CAS PubMed Google Scholar
- Rice, L. M. & Brünger, A. T. Crystal structure of the vesicular transport protein Sec17: implications for SNAP function in SNARE complex disassembly. Mol. Cell 4, 85? 95 (1999).
Article CAS PubMed Google Scholar
- Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841?849 (1998).
Article CAS PubMed Google Scholar
- Lerman, J. C., Robblee, J., Fairman, R. & Hughson, F. M. Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry 39, 8470?8479 ( 2000).
Article CAS PubMed Google Scholar
- Calakos, N., Bennett, M. K., Peterson, K. E. & Scheller, R. H. Protein?protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263, 1146 ?1149 (1994).
Article CAS PubMed Google Scholar
- Misura, K. M. S., Scheller, R. H. & Weis, W. I. Three-dimensional structure of the neuronal-Sec1?syntaxin 1a complex. Nature 404, 355? 362 (2000).The structure revealed that a pronounced conformational change of syntaxin occurs before fusion.
Article CAS PubMed Google Scholar
- Nicholson, K. L. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nature Struct. Biol. 5, 793?802 (1998).
Article CAS PubMed Google Scholar
- Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the α-helical core of a SNARE complex in the absence of an N-terminal regulatory domain . Proc. Natl Acad. Sci. USA 96, 12565? 12570 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Hata, Y., Slaughter, C. A. & Südhof, T. C. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366, 347? 351 (1993).
Article CAS PubMed Google Scholar
- Yang, B., Steegmaier, M., Gonzalez, L. C. Jr & Scheller, R. H. nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol. 148, 247?252 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372? 4382 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Chen, Y. A., Scales, S. J., Patel, S. M., Doung, Y.-C. & Scheller, R. H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165?174 (1999). This was the first systematic structure?function analysis of a SNARE protein. It provided the first piece of direct functional evidence in a physiological system that SNAREs drive membrane fusion.
Article CAS PubMed Google Scholar
- Fukuda, R. et al. Functional architecture of an intracellular membrane t-SNARE . Nature 407, 198?202 (2000).
Article CAS PubMed Google Scholar
- Elferink, L. A., Trimble, W. S. & Scheller, R. H. Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J. Biol. Chem. 264, 11061?11064 (1989).
CAS PubMed Google Scholar
- Cornille, F., Deloye, F., Fournie-Zaluski, M. C., Roques, B. P. & Poulain, B. Inhibition of neurotransmitter release by synthetic proline-rich peptides shows that the N-terminal domain of vesicle-associated membrane protein/synaptobrevin is critical for neuro-exocytosis. J. Biol. Chem. 270, 16826?16832 (1995).
Article CAS PubMed Google Scholar
- Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713? 722 (1999).The authors proposed a detailed kinetic model of SNARE-mediated fusion reaction based on quantitative electrophysiological analyses.
Article CAS PubMed Google Scholar
- Margittai, M., Otto, H. & Jahn, R. A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains. FEBS Lett. 446, 40 ?44 (1999).
Article CAS PubMed Google Scholar
- Laage, R., Rohde, J., Brosig, B. & Langosch, D. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. J. Biol. Chem. 275, 17481 ?17487 (2000).
Article CAS PubMed Google Scholar
- Sutton, R. B., Fasshauer, D., Jahn, R. & Brünger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347? 353 (1998).Provided the first high-resolution crystal structure of a SNARE complex, which was instrumental in elucidating the function of SNARE proteins.
Article CAS PubMed Google Scholar
- McNew, J. A., Weber, T., Engelman, D. M., Söllner, T. H. & Rothman, J. E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell 4, 415?421 ( 1999).
Article CAS PubMed Google Scholar
- McNew, J. A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105?117 (2000).Taking advantage of the liposome fusion system (first described in reference 58 ), the authors delved deep into the mechanisms by which the SNAREs fuse two lipid bilayers.
Article CAS PubMed PubMed Central Google Scholar
- Littleton, J. T. et al. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21, 401?413 ( 1998).
Article CAS PubMed Google Scholar
- Hay, J. C. & Martin, T. F. Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J. Cell Biol. 119, 139 ?151 (1992).
Article CAS PubMed Google Scholar
- Xu, T., Binz, T., Niemann, H. & Neher, E. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nature Neurosci. 1, 192?200 (1998).
Article CAS PubMed Google Scholar
- Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759?772 ( 1998).
Article CAS PubMed Google Scholar
- Nickel, W. et al. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc. Natl Acad. Sci. USA 96, 12571?12576 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Ungermann, C., Sato, K. & Wickner, W. Defining the functions of _trans_-SNARE pairs. Nature 396, 543?548 ( 1998).The controversy concerning SNARE function was heavily fuelled by this report, which concluded that SNAREs are not directly involved in the membrane fusion process.
Article CAS PubMed Google Scholar
- Tahara, M. et al. Calcium can disrupt the SNARE protein complex on sea urchin egg secretory vesicles without irreversibly blocking fusion. J. Biol. Chem. 273, 33667?33673 (1998).
Article CAS PubMed Google Scholar
- Coorssen, J. R., Blank, P. S., Tahara, M. & Zimmerberg, J. Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity. J. Cell Biol. 143, 1845?1857 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Peters, C. et al. Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. Science 285, 1084 ?1087 (1999).
Article CAS PubMed Google Scholar
- Chen, Y. A., Duvvuri, V., Schulman, H. & Scheller, R. H. Calmodulin and protein kinase C increase Ca2+-stimulated secretion by modulating membrane-attached exocytic machinery. J. Biol. Chem. 274, 26469?26476 ( 1999).
Article CAS PubMed Google Scholar
- Chamberlain, L. H., Roth, D., Morgan, A. & Burgoyne, R. D. Distinct effects of α-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis. J. Cell Biol. 130, 1063?1070 (1995).
Article CAS PubMed Google Scholar
- Quetglas, S., Leveque, C., Miquelis, R., Sato, K. & Seagar, M. Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. Proc. Natl Acad. Sci. USA 97, 9695?9700 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Coppola, T. et al. Disruption of Rab3?calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis. EMBO J. 18, 5885?5891 ( 1999).
Article CAS PubMed PubMed Central Google Scholar
- Mennerick, S. & Matthews, G. Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron 17, 1241?1249 ( 1996).
Article CAS PubMed Google Scholar
- Hua, S. -Y. & Charlton, M. P. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nature Neurosci. 2, 1078?1083 ( 1999).This paper presents compelling evidence that partially assembled SNARE complexes exist.
Article CAS PubMed Google Scholar
- Pellizzari, R. et al. Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins . J. Biol. Chem. 271, 20353? 20358 (1996).
Article CAS PubMed Google Scholar
- Foran, P., Shone, C. C. & Dolly, J. O. Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry 33 , 15365?15374 (1994).
Article CAS PubMed Google Scholar
- Geppert, M. & Südhof, T. C. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu. Rev. Neurosci. 21, 75?95 ( 1998).
Article CAS PubMed Google Scholar
- Davis, A. F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363?376 ( 1999)
Article CAS PubMed Google Scholar
- Sutton, R. B., Ernst, J. A. & Brünger, A. T. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca2+-independent SNARE complex interaction. J. Cell Biol. 147, 589?598 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Gerona, R. R., Larsen, E. C., Kowalchyk, J. A. & Martin, T. F. The C terminus of SNAP25 is essential for Ca2+-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328?6336 (2000).
Article CAS PubMed Google Scholar
- Desai, R. C. et al. The C2b domain of synaptotagmin is a Ca2+-sensing module essential for exocytosis. J. Cell Biol. 150, 1125?1136 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Zimmerberg, J., Vogel, S. S. & Chernomordik, L. V. Mechanisms of membrane fusion. Annu. Rev. Biophys. Biomol. Struct. 22, 433?466 (1993).
Article CAS PubMed Google Scholar
- Monck, J. R. & Fernandez, J. M. The fusion pore and mechanisms of biological membrane fusion. Curr. Opin. Cell Biol. 8, 524?533 (1996).
Article CAS PubMed Google Scholar
- Lee, J. & Lentz, B. R. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry 36, 6251? 6259 (1997).
Article CAS PubMed Google Scholar
- Chandler, D. E. & Heuser, J. E. Arrest of membrane fusion events in mast cells by quick-freezing. J. Cell Biol. 86, 666?674 (1980).
Article CAS PubMed Google Scholar
- Breckenridge, L. J. & Almers, W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328, 814?817 ( 1987).
Article CAS PubMed Google Scholar
- Almers, W. & Tse, F. W. Transmitter release from synapses: does a preassembled fusion pore initiate exocytosis? Neuron 4, 813?818 (1990).
Article CAS PubMed Google Scholar
- Monck, J. R. & Fernandez, J. M. The exocytotic fusion pore and neurotransmitter release. Neuron 12, 707?716 (1994).
Article CAS PubMed Google Scholar
- Skehel, J. J. & Wiley, D. C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871?874 (1998).
Article CAS PubMed Google Scholar
- Hughson, F. M. Enveloped viruses: a common mode of membrane fusion? Curr. Biol. 7, 565?569 ( 1997).
Article Google Scholar
- Ohki, S. Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion. J. Membr. Biol. 77, 265?275 ( 1984).
Article CAS PubMed Google Scholar
- Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889?892 ( 2000).
Article CAS PubMed Google Scholar
- McMahon, H. T., Missler, M., Li, C. & Südhof, T. C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83, 111?119 (1995).
Article CAS PubMed Google Scholar
- Fujita, Y. et al. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20, 905?915 (1998).
Article CAS PubMed Google Scholar
- Bean, A. J., Seifert, R., Chen, Y. A., Sacks, R. & Scheller, R. H. Hrs-2 is an ATPase implicated in calcium-regulated secretion. Nature 385, 826? 829 (1997).
Article CAS PubMed Google Scholar
- Ilardi, J. M., Mochida, S. & Sheng, Z. H. Snapin: a SNARE-associated protein implicated in synaptic transmission. Nature Neurosci. 2, 119?124 (1999).
Article CAS PubMed Google Scholar
- Lao, G. et al. Syntaphilin: a syntaxin-1 clamp that controls SNARE assembly. Neuron 25, 191?201 ( 2000).
Article CAS PubMed Google Scholar
- Betz, A. et al. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21, 123 ?136 (1998).
Article CAS PubMed Google Scholar
- Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83?94 (1996). This is the key paper that established the current view that α-SNAP and NSF function after fusion.
Article CAS PubMed Google Scholar
- Hunt, J. M. et al. A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12, 1269? 1279 (1994).
Article CAS PubMed Google Scholar
- Schulze, K. L., Broadie, K., Perin, M. S. & Bellen, H. J. Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80, 311?320 ( 1995).
Article CAS PubMed Google Scholar
- Broadie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663?673 (1995).
Article CAS PubMed Google Scholar
- Ossig, R. et al. Exocytosis requires asymmetry in the central layer of the SNARE complex. EMBO J. 19, 6000? 6010 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Katz, L. & Brennwald, P. Testing the 3Q:1R 'rule': mutational analysis of the ionic 'zero' layer in the yeast exocytic SNARE complex reveals no requirement for arginine. Mol. Biol. Cell 11, 3849?3858 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Wei, S. et al. Exocytotic mechanism studied by truncated and zero layer mutants of the C-terminus of SNAP-25. EMBO J. 19, 1279?1289 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Weber, T. et al. SNAREpins are functionally resistant to disruption by NSF and αSNAP. J. Cell Biol. 149, 1063 ?1072 (2000).
Article CAS PubMed PubMed Central Google Scholar