From the perception of action to the understanding of intention (original) (raw)
Carruthers, P. & Smith, P. K. (eds) Theories of Theories of Mind (Cambridge Univ. Press, Cambridge, UK, 1996). Book Google Scholar
Goldman, A. I. In defense of simulation theory. Mind Lang.7, 104–119 (1992). Article Google Scholar
Gordon, R. M. in Theories of Theories of Mind (eds Carruthers, P. & Smith, P. K.) 11–21 (Cambridge Univ. Press, Cambridge, UK, 1996). Book Google Scholar
Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys.14, 201–211 (1973). Article Google Scholar
Koslowski, L. T. & Cutting, J. E. Recognising the sex of a walker from point-lights mounted on ankles: some second thoughts. Percept. Psychophys.23, 459 (1978).
Dittrich, W. H., Troscianko, T., Lea, S. E. & Morgan, D. Perception of emotion from dynamic point-light displays represented in dance. Perception25, 727–738 (1996). ArticleCASPubMed Google Scholar
Fox, R. & McDaniel, C. The perception of biological motion by human infants. Science218, 486–487 (1982). ArticleCASPubMed Google Scholar
Bertenthal, B. I. in Visual Perception and Cognition in Infancy (ed. Granrud, C.) 175–214 (Erlbaum, Hullsdale, New Jersey, 1993). Google Scholar
Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci.15, 20–25 (1992). ArticleCASPubMed Google Scholar
Baizer, J., Ungerleider, L. & Desimone, R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaque. J. Neurosci.11, 168–190 (1991). ArticleCASPubMedPubMed Central Google Scholar
Oram, M. W. & Perrett, D. I. Responses of anterior superior temporal polysensory (STPa) neurons to biological motion stimuli. J. Cogn. Neurosci.6, 99–116 (1994). ArticleCASPubMed Google Scholar
Grossman, E. et al. Brain areas involved in perception of biological motion. J. Cogn. Neurosci.12, 711–720 (2000). ArticleCASPubMed Google Scholar
Grèzes, J. et al. Does perception of biological motion rely on specific brain regions? Neuroimage13, 775–785 (2001). ArticlePubMed Google Scholar
Grossman, E. & Blake, R. Brain activity evoked by inverted and imagined motion. Vision Res.41, 1475–1482 (2001). ArticleCASPubMed Google Scholar
Rizzolatti, G. et al. Localization of grasp representations in humans by PET. 1. Observation versus execution. Exp. Brain Res.111, 246–252 (1996). ArticleCASPubMed Google Scholar
Puce, A., Allison, T., Bentin, S., Gore, J. C. & McCarthy, G. Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci.18, 2188–2199 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wicker, B., Michel, F., Henaff, M. A. & Decety, J. Brain regions associated with mutual gaze: a PET study. Neuroimage8, 221–227 (1998). ArticleCASPubMed Google Scholar
Freyd, J. J. in Attention and Performance XIV: Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience (eds Meyer, D. & Kornblum, S.) 99–119 (MIT Press, Cambridge, Massachusetts, 1993). Google Scholar
Watson, J. D. et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex3, 79–94 (1993). ArticleCASPubMed Google Scholar
Kourtzi, Z. & Kanwisher, N. Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci.12, 48–55 (2000).This fMRI study found greater activation in area MT/MST when viewing static photographs with implied motion than when viewing photographs without implied motion. It is one of the first neurophysiological demonstrations that dynamic information can be extracted from still photographs. ArticleCASPubMed Google Scholar
Shiffrar, M. in Handbook of Perception (ed. Goldstein, E. B.) 238–263 (Blackwell, Oxford, 2001). Google Scholar
Shiffrar, M. & Freyd, J. J. Apparent motion of the human body. Psychol. Sci.1, 257–264 (1990). Article Google Scholar
Shiffrar, M. & Freyd, J. J. Timing and apparent motion path choice with human body photographs. Psychol. Sci.4, 379–384 (1993).An excellent demonstration of the cognitive mechanisms involved in human motion perception. Article Google Scholar
Stevens, J. A., Fonlupt, P., Shiffrar, M. A. & Decety, J. New aspects of motion perception: selective neural encoding of apparent human movements. Neuroreport11, 109–115 (2000). ArticleCASPubMed Google Scholar
Shiffrar M. When what meets where. Curr. Dir. Psychol. Sci.3, 96–100 (1994). Article Google Scholar
Frith, C. D. & Frith, U. Interacting minds — a biological basis. Science286, 1692–1695 (1999).An elegant article that reviews developmental and neuroscientific studies on 'mentalizing,' and proposes that the detection of biological motion may have evolved to enable us to infer other people's mental states. ArticleCASPubMed Google Scholar
Heider, F. & Simmel, M. An experimental study of apparent behavior. Am. J. Psychol.57, 243–249 (1944). Article Google Scholar
Kassin, K. Heider and Simmel revisited: causal attribution and the animated film technique. Rev. Pers. Soc. Psychol.3, 145–169 (1982). Google Scholar
Morris, M. W. & Peng, K. Culture and cause: American and Chinese attributions for social and physical events. J. Pers. Soc. Psychol.67, 949–971 (1994). Article Google Scholar
Gergely, G., Nadasdy, Z., Csibra, G. & Biro, S. Taking the intentional stance at 12 months of age. Cognition56, 165–193 (1995). ArticleCASPubMed Google Scholar
Uller, C. & Nichols, S. Goal attribution in chimpanzees. Cognition76, B27–34 (2000).This fascinating study shows that chimpanzees have an understanding of the 'goals' of two-dimensional objects in simple video displays. ArticleCASPubMed Google Scholar
Castelli, F., Happé, F., Frith, U. & Frith, C. D. Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement pattern. Neuroimage12, 314–325 (2000). ArticleCASPubMed Google Scholar
Ito, M. Neurophysiological aspects of the cerebellar motor control system. Int. J. Neurol.7, 162–176 (1970). CASPubMed Google Scholar
Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science269, 1880–1882 (1995). ArticleCASPubMed Google Scholar
Wolpert, D. M. & Ghahramani, Z. Computational principles of movement neuroscience. Nature Neurosci.3 (suppl.), 1212–1217 (2000). ArticleCASPubMed Google Scholar
Frith, C. D., Blakemore, S.-J. & Wolpert, D. M. Abnormalities in the awareness and control of action. Phil. Trans. R. Soc. Lond. B355, 1771–1788 (2000). ArticleCAS Google Scholar
Von Holst, E. Relations between the central nervous system and the peripheral organs. Br. J. Anim. Behav.2, 89–94 (1954). Article Google Scholar
Miall, R. C. & Wolpert, D. M. Forward models for physiological motor control. Neural Netw.9, 1265–1279 (1996). ArticlePubMed Google Scholar
Wolpert, D. M. Computational approaches to motor control. Trends Cogn. Sci.1, 209–216 (1997). ArticleCASPubMed Google Scholar
Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Netw.11, 1317–1329 (1998). ArticleCASPubMed Google Scholar
Blakemore, S.-J., Frith, C. D. & Wolpert, D. W. Spatiotemporal prediction modulates the perception of self-produced stimuli. J. Cogn. Neurosci.11, 551–559 (1999). ArticleCASPubMed Google Scholar
Jiang, W., Chapman, C. E. & Lamarre, Y. Modulation of the cutaneous responsiveness of neurones in the primary somatosensory cortex during conditioned arm movements in the monkey. Exp. Brain Res.84, 342–354 (1991). ArticleCASPubMed Google Scholar
Chapman, C. E. & Ageranioti-Belanger, S. A. Comparison of the discharge of primary somatosensory cortical (SI) neurones during active and passive tactile discrimination. Proc. Third IBRO World Cong. Neurosci. 317 (1991).
Chapman, C. E. Active versus passive touch: factors influencing the transmission of somatosensory signals to primary somatosensory cortex. Can. J. Physiol. Pharmacol.72, 558–570 (1994). ArticleCASPubMed Google Scholar
Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nature Neurosci.1, 635–640 (1998). ArticleCASPubMed Google Scholar
Numminen, J., Salmelin, R. & Hari, R. Subject's own speech reduces reactivity of the human auditory cortex. Neurosci. Lett.265, 119–122 (1999). ArticleCASPubMed Google Scholar
Curio, G., Neuloh, G., Numminen, J., Jousmaki, V. & Hari, R. Speaking modifies voice-evoked activity in the human auditory cortex. Hum. Brain Mapp.9, 183–191 (2000).A magnetoencephalographic study revealing differential responses in human auditory cortex to self-uttered speech compared with listening to a replay of the same speech. ArticleCASPubMedPubMed Central Google Scholar
Imamizu, H. et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature403, 192–195 (2000).An fMRI study in which subjects learned to use a novel tool. The results show that the cerebellum acquires internal models of objects in the external world. ArticleCASPubMed Google Scholar
Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci.2, 338–347 (1998). ArticleCASPubMed Google Scholar
Blakemore, S.-J., Frith, C. D. & Wolpert, D. W. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport12, 1879–1885 (2001). ArticleCASPubMed Google Scholar
Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. Is the cerebellum a Smith predictor? J. Mot. Behav.25, 203–216 (1993). ArticleCASPubMed Google Scholar
Hume, D. Treatise of Human Nature (Oxford University Press, Oxford, 1978). Google Scholar
Gordon, R. M. in Mind and Morals: Essays on Ethics and Cognitive Science (eds May, L., Friedman, M. & Clark, A.) 165–180 (MIT Press, Cambridge, Massachusetts, 1996). Google Scholar
Meltzoff, A. N. & Moore, M. K. in Body and the Self (eds Bermúdez, J., Marcel, A. J. & Eilan, N.) 43–69 (MIT Press, Cambridge, Massachusetts, 1995). Google Scholar
Prinz, W. Perception and action planning. Eur. J. Cogn. Psychol.9, 129–154 (1997). Article Google Scholar
Shepard, R. N. Ecological constraints on internal representations: resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychol. Rev.91, 417–447 (1984). ArticleCASPubMed Google Scholar
Barresi, J. & Moore, C. Intentional relations and social understanding. Behav. Brain Sci.19, 107–154 (1996).An interesting cognitive model that attempts to explain how social organisms represent the intentional relations of themselves and other agents. Article Google Scholar
Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain119, 593–609 (1996). ArticlePubMed Google Scholar
Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind reading. Trends Cogn. Sci.2, 493–501 (1998). ArticleCASPubMed Google Scholar
Decety, J. et al. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain120, 1763–1777 (1997). ArticlePubMed Google Scholar
Ruby, P. & Decety, J. Effect of the subjective perspective taking during simulation of action: a PET investigation of agency. Nature Neurosci.4, 546–550 (2001). ArticleCASPubMed Google Scholar
Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol.73, 2608–2611 (1995).An important demonstration using TMS of increased activity in the motor system during the observation of actions. ArticleCASPubMed Google Scholar
Grèzes, J., Costes, N. & Decety, J. Top down effect of the strategy to imitate on the brain areas engaged in perception of biological motion: a PET investigation. Cogn. Neuropsychol.15, 553–582 (1998). ArticlePubMed Google Scholar
Hari, R. et al. Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc. Natl Acad. Sci. USA95, 15061–15065 (1998). ArticleCASPubMedPubMed Central Google Scholar
Buccino, G. et al. Action observation activates premotor and parietal areas in somatotopic manner: an fMRI study. Eur. J. Neurosci.13, 400–404 (2001).An fMRI study that provides the first functional evidence for a somatotopic pattern of activation in the premotor cortex, similar to that of the classical motor cortex homunculus, elicited by the observation of actions made by another individual. CASPubMed Google Scholar
Meltzoff, A. N. & Moore, M. K. Imitation of facial and manual gestures by human neonates. Science198, 75–78 (1977). ArticleCASPubMed Google Scholar
Meltzoff, A. N. Understanding the intentions of others: re-enactment of intended acts by 18-month-old children. Dev. Psychol.31, 838–850 (1995). ArticlePubMedPubMed Central Google Scholar
Gopnik, A. & Meltzoff, A. N. Words, Thoughts, and Theories (MIT Press, Cambridge, Massachusetts, 1997). Google Scholar
Fletcher, P. C. et al. Other minds in the brain: a functional imaging study of 'theory of mind' in story comprehension. Cognition57, 109–128 (1995). ArticleCASPubMed Google Scholar
Gallagher, H. L. et al. Reading the mind in cartoons and stories: an fMRI study of 'theory of mind' in verbal and nonverbal tasks. Neuropsychologia38, 11–21 (2000). ArticleCASPubMed Google Scholar
Brunet E., Sarfati Y., Hardy-Bayle M. C. & Decety J. A. PET investigation of attribution of intentions to others with a non-verbal task. Neuroimage11, 157–166 (2000). ArticleCASPubMed Google Scholar
Baron-Cohen, S., Leslie, A. M. & Frith, U. Does the autistic child have a 'Theory of Mind'? Cognition21, 37–46 (1985). ArticleCASPubMed Google Scholar
Corcoran, R., Mercer, G. & Frith, C. D. Schizophrenia, symptomatology and social inference: investigating 'theory of mind' in people with schizophrenia. Schizophr. Res.17, 5–13 (1995). ArticleCASPubMed Google Scholar
Happé, F. et al. 'Theory of mind' in the brain. Evidence from a PET scan study of Asperger syndrome. Neuroreport8, 197–201 (1996). ArticlePubMed Google Scholar
Brunet, E., Sarfati, Y., Hardy-Baylé, M. C. & Decety, J. A PET study of the attribution of intentions to others in schizophrenia: comparison with normal subjects on a non-verbal task. Schizophr. Res.49 (suppl.), 174 (2001). Google Scholar
Fink, G. R. et al. The neural consequences of conflict between intention and the senses. Brain122, 497–512 (1999). ArticlePubMed Google Scholar