CD36, a scavenger receptor implicated in atherosclerosis (original) (raw)
Febbraio M, Hajjar DP, Silverstein RL . CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation and lipid metabolism. J Clin Inv 2001; 108: 785–791. ArticleCAS Google Scholar
Calvo D, Dopazo J, Vega MA . The CD36, CLA-1 (CD36L1), and LIMPII (CD36L2) gene family: cellular distribution, chromosomal location, and genetic evolution. Genomics 1995; 25: 100–106. ArticleCASPubMed Google Scholar
Hoosdally SJ, Andress EJ, Wooding C, Marin CA, Linton KJ . The human scavenger receptor CD36; glycosylation status and its role in trafficking and function. J Biol Chem 2009; 284: 16277–16288. ArticleCASPubMedPubMed Central Google Scholar
Navazo P, Daviet L, Ninio E, McGregor JL . Identification on human CD36 of a domain (155-183) implicated in binding oxidized low-density lipoproteins (Ox-LDL). Arterioscler Thromb Vasc Biol 1996; 16: 1033–1039. ArticleCAS Google Scholar
Dawson DW, Pearce SFA, Zhong R, Silverstein RL, Frazier WA, Bouck NP . CD36 mediates the inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997; 138: 707–717. ArticleCASPubMedPubMed Central Google Scholar
Abumrad NA, el-Maghrabi MA, Amri EZ, Lopez E, Grimaldi PA . Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during peadipocyte differentiation. Homology with human CD36. J Biol Chem 1993; 268: 17665–17668. CASPubMed Google Scholar
Hansson GK . Immune mechanism in atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 20: 1876–1890. Article Google Scholar
Greenberg ME, Li XM, Gugiu BG, Gu X, Qin J, Salomon RG et al. The lipid whisker model of the structure of oxidized cell membranes. J Biol Chem 2008; 283: 2385–2396. ArticleCASPubMed Google Scholar
Leitinger N . Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol 2003; 14: 421–430. ArticleCASPubMed Google Scholar
Podrez EA, Febbraio M, Sheibani N, Schmitt D, Silverstein RL, Hajjar DP et al. The macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 2000; 105: 1095–1108. ArticleCASPubMedPubMed Central Google Scholar
Boullier A, Gillotte KL, Hörkkö S, Green SR, Friedman P, Dennis EA et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J Biol Chem 2000; 275: 9163–9169. ArticleCASPubMed Google Scholar
Bird DA, Gillotte KL, Hörkkö S, Friedman P, Dennis EA, Witztum JL et al. Receptors for oxidized low-density lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modified protein moieties: Implications with respect to macrophage recognition of apoptotic cells. Proc Natl Acad Sci USA 1999; 96: 6347–6352. ArticleCASPubMedPubMed Central Google Scholar
Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem 2002; 277: 38517–38523. ArticleCASPubMed Google Scholar
Libby P . Inflammation in atherosclerosis. Nature 2002; 407: 233–241. Google Scholar
Endeman G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA . CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993; 268: 11811–11816. Google Scholar
Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM . Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR-γ. Cell 1998; 93: 229–240. ArticleCASPubMed Google Scholar
Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM . PPAR-γ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241–252. ArticleCASPubMed Google Scholar
Carr AC, McCall MR, Frei B . Oxidation of LDL by myeloperoxidase and reactive oxygen species; reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 2000; 20: 1716–1723. ArticleCASPubMed Google Scholar
Jiang Y, Wang M, Huang K, Zhang Z, Shao N, Zhang Y et al. Oxidized low-density lipoprotein induces secretion of interleukin-1β by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem Biophys Res Commun 2012; 425: 121–126. ArticleCASPubMed Google Scholar
Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105: 1049–1056. ArticleCASPubMedPubMed Central Google Scholar
Guy E, Kuchibhotla S, Silverstein R, Febbraio M . Continued inhibition of atherosclerotic lesion development in long term western diet fed CD360/ apoE0 mice. Atherosclerosis 2007; 192: 123–130. ArticleCASPubMed Google Scholar
Kuchibhotla S, Vanegas D, Kennedy DJ, Guy E, Nimako G, Morton RE et al. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc Res 2008; 78: 185–196. ArticleCASPubMed Google Scholar
Febbraio M, Guy E, Silverstein RL . Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24: 2333–2338. ArticleCASPubMed Google Scholar
Marleau S, Harb D, Bujold K, Avallone R, Iken K, Wang Y . EP 80317, a ligand of the CD36 scavenger receptor, protects apolipoprotein E-deficient mice from developing atherosclerotic lesions. FASEB J 2005; 19: 1869–1871. ArticleCASPubMed Google Scholar
Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest 2005; 115: 2192–2201. ArticleCASPubMedPubMed Central Google Scholar
Collot-Teixeira S, Martin J, McDeromott-Roe C, Poston R, McGregor JL . CD36 and macrophages in atherosclerosis. Cardiovasc Res 2007; 75: 468–477. ArticleCASPubMed Google Scholar
Kennedy DJ, Kuchibhotla SD, Guy E, Park YM, Nimako G, Vanegas D et al. Dietary cholesterol plays a role in CD36-mediated atherogenesis in LDLR-knockout mice. Arterioscler Thromb Vasc Biol 2009; 29: 1481–1487. ArticleCASPubMedPubMed Central Google Scholar
Manning-Tobin JJ, Moore KJ, Seimon TA, Bell SA, Sharuk M, Alvarez-Leite JI et al. Freeman M.W. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 2009; 29: 19–26. ArticleCASPubMed Google Scholar
Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010; 11: 155–161. ArticleCASPubMed Google Scholar
Chen K, Febbraio M, Li W, Silverstein RL . A specific CD36-dependent signaling pathway is required for platelet activation by oxLDL. Circ Res 2008; 102: 1512–1519. ArticleCASPubMedPubMed Central Google Scholar
Moore KJ, El Khoury J, Medeiros LA, Terada K, Geula C, Luster AD et al. A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid. J Biol Chem 2002; 277: 47373–47379. ArticleCASPubMed Google Scholar
Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP . CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997; 138: 707–717. ArticleCASPubMedPubMed Central Google Scholar
Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL . A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab 2006; 4: 211–221. ArticleCASPubMedPubMed Central Google Scholar
Rahaman SO, Zhou G, Silverstein RL . Vav protein guanine nucleotide exchange factor regulates CD36 protein-mediated macrophage foam cell formation via calcium and dynamin-dependent processes. J Biol Chem 2011; 286: 36011–36019. ArticleCASPubMedPubMed Central Google Scholar
Rahaman SO, Li W, Silverstein RL . Vav guanine nucleotide exchange factors regulate atherosclerotic lesion development in mice. Arterioscler Thromb Vasc Biol 2013; 33: 2053–2057. ArticleCASPubMed Google Scholar
Xia F, Li R, Wang C, Yang S, Tian L, Dong H et al. IRGM1 regulates oxidized LDL uptake by macrophage via actin-dependent receptor internalization during atherosclerosis. Sci Rep 2013; 3: 1867. ArticlePubMedPubMed CentralCAS Google Scholar
Zhao M, Liu Y, Wang X, New L, Han J, Brunk UT . Activation of the p38 MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL. APMIS 2002; 110: 458–468. ArticleCASPubMed Google Scholar
Yamashita S, Hirano K, Kuwasako T, Janabi M, Toyama Y, Ishigami M et al. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis: insights from CD36-deficient patients. Mol Cell Biochem 2007; 299: 19–22. ArticleCASPubMed Google Scholar
Miao WM, Vasile E, Lane WS, Lawler J . CD36 associates with CD9 and integrins on human blood platelets. Blood 2001; 97: 1689–1696. ArticleCASPubMed Google Scholar
Hashimoto M, Tawaratsumida K, Kariya H, Kiyohara A, Suda Y, Krikae F et al. Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J Immunol 2006; 177: 3162–3169. ArticleCASPubMed Google Scholar
Triantafilou M, Gamper G, Haston RM, Mouratis MA, Morath S, Hartung T et al. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR 2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 2006; 281: 31002–31011. ArticleCASPubMed Google Scholar
Erdman LK, Cosio G, Helmers AJ, Gowda DC, Grinstein S, Kain KC . CD36 and TLR interactions in inflammation and phagocytosis: implications for malaria. J Immuol 2009; 183: 2452–2459. Google Scholar
Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 2013; 14: 812–820. ArticleCASPubMedPubMed Central Google Scholar
Rios FJ, Ferracini M, Pecenin M, Koga MM, Wang Y, Ketelhuth DF et al. Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts. PLoS ONE 2013; 8: e76893. ArticleCASPubMedPubMed Central Google Scholar
Heit B, Kim H, Cosío G, Castaño D, Collins R, Lowell CA . Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev Cell 2013; 24: 372–383. ArticleCASPubMedPubMed Central Google Scholar
Reis ED, Lie J, Fayad ZA, Rong JX, Hansoty D, Aguinaldo JG et al. Dramatic remodeling of advanced atherosclerotic plaques of the apolipoprotein E-deficient mouse in a novel transplantation model. Vasc Surgery 2001; 34: 541–547. ArticleCAS Google Scholar
Chereshnev I, Trogan E, Omerhodzic S, Itskovich V, Aguinaldo JG, Fayad ZA et al. Mouse model of heterotopic aortic arch transplantation. J Surg Res 2003; 111: 171–176. ArticlePubMed Google Scholar
Llodra J, Angeli V, Liu J, Trogan E, Fisher EA, Randolph GJ . Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci USA 2004; 101: 11779–11784. ArticleCASPubMedPubMed Central Google Scholar
Quinn MT, Parthasarathy S, Fong LG, Steinberg D . Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophagesduring atherogenesis. Proc Natl Acad Sci USA 1987; 84: 2995–2998. ArticleCASPubMedPubMed Central Google Scholar
Park YM, Febbraio M, Silverstein RL . CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest 2009; 119: 136–145. CASPubMed Google Scholar
Park YM, Drazba JA, Vasanji A, Egelhoff T, Febbraio M, Silverstein RL . Oxidized LDL/CD36 interaction induces loss of cell polarity and inhibits macrophage locomotion. Mol Cell Biol 2012; 23: 3057–3068. ArticleCAS Google Scholar
Fuentes QE, Fuentes QF, Andrés V, Pello OM, de Mora JF, Palomo GI . Role of platelets as mediators that link inflammation and thrombosis in atherosclerosis. Platelets 2013; 24: 255–262. ArticleCAS Google Scholar
Podrez EA, Byzova TV, Febbraio M, Salomon RG, Ma Y, Valiyaveettil M et al. Platelet CD36 links hyperlipidemia, oxidant stress and a pro-thrombotic phenotype. Nat Med 2007; 13: 1086–1095. ArticleCASPubMedPubMed Central Google Scholar
Chen K, Febbraio M, Li W, Silverstein RL . A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ Res 2008; 102: 1512–1519. ArticleCASPubMedPubMed Central Google Scholar
Chen K, Li W, Major J, Rahaman SO, Febbraio M, Silverstein RL . Vav guanine nucleotide exchange factors link hyperlipidemia and a prothrombotic state. Blood 2011; 117: 5744–5750. ArticleCASPubMedPubMed Central Google Scholar
Zimman A, Titz B, Komisopoulou E, Biswas S, Graeber TG, Podrez EA . Phosphoproteomic analysis of platelets activated by pro-thrombotic oxidized phospholipids and thrombin. PLoS ONE 2014; 9: e84488. ArticlePubMedPubMed CentralCAS Google Scholar
Eitzman DT, Westrick RJ, Xu Z, Tyson J, Ginsburg D . Hyperlipidemia promotes thrombosis after injury to atherosclerotic vessels in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2000; 20: 1831–1834. ArticleCASPubMed Google Scholar
Ghosh A, Li W, Febbraio M, Espinola RG, McCrae KR, Cockrell E et al. Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice. J Clin Invest 2008; 118: 1934–1943. CASPubMedPubMed Central Google Scholar
Zhu W, Li W, Silverstein RL . Advanced glycation end products induce a prothrombotic phenotype in mice via interaction with platelet CD36. Blood 2012; 119: 6136–6144. ArticleCASPubMedPubMed Central Google Scholar
Siegel-Axel D, Daub K, Seizer P, Lindemann S, Gawaz M . Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res 2008; 78: 8–17. ArticleCASPubMed Google Scholar
Daub K, Seizer P, Stellos K, Krämer BF, Bigalke B, Schaller M et al. Oxidized LDL-activated platelets induce vascular inflammation. Semin Thromb Hemost 2010; 36: 146–156. ArticleCASPubMed Google Scholar
Curtiss LK, Black AS, Takagi Y, Plow EF . New mechanism for foam cell generation in atherosclerotic lesions. J Clin Invest 1987; 80: 367–373. ArticleCASPubMedPubMed Central Google Scholar
Badrnya S, Schrottmaier WC, Kral JB, Yaiw KC, Volf I, Schabbauer G . Platelets mediate oxidized low-density lipoprotein-induced monolayer extravasation and foam cell formation. Arterioscler Thromb Vasc Biol 2013; 34: 571–580. ArticlePubMedCAS Google Scholar
Lipsky RH, Ikeda H, Medved ES . A dinucleotide repeat in the thrid intron of CD36. Hum Mol Gent 1994; 3: 217. ArticleCAS Google Scholar
Yamamoto N, Akamatsu N, Sakuraba H, Yamazaki H, Tanoue K . Platelet glycoprotein IV(CD36) deficiency is associated with the absence (type I) or the presence (type II) of glycoprotein IV on monocytes. Blood 1994; 83: 392–397. CASPubMed Google Scholar
Kashiwagi H, Tomiyama Y, Kosugi S, Shiraga M, Lipsky RH, Nagao N et al. Family studies of type II CD36 deficient subjects: linkage of a CD36 allele to a platelet-specific mRNA expression defect(s) causing type II CD36 deficiency. Thromb Haemost 1995; 72: 758–763. Google Scholar
Kashiwagi H, Tomiyama Y, Nozaki S, Kiyoi T, Tadokoro S, Matsumoto K et al. Analyses of genetic abnormalities in type I CD36 deficiency in Japan: idendification and cell biological characterization of two novel mutations that cause CD36 deficiency in man. Hum Genet 2001; 108: 459–466. ArticleCASPubMed Google Scholar
Hanawa H, Watanabe K, Nakamura T, Ogawa Y, Toba K, Fuse I et al. Identification of cryptic splice site, exon skipping, and novel point mutations in type I CD36 deficiency. J Med Genet 2002; 39: 286–291. ArticleCASPubMedPubMed Central Google Scholar
Imai M, Tanaka T, Kintaka T, Ikemoto T, Shimizu A, Kitaura Y . Genomic heterogeneity of type II CD36 deficiency. Clin Chim Acta 2002; 321: 97–106. ArticleCASPubMed Google Scholar
Kashiwagi H, Tomiyama Y, Kosugi S, Shiraga M, Lipsky RH, Kanayama Y et al. Identification of molecular defects in a subject with type I CD36 deficiency. Blood 1994; 83: 3545–3552. CASPubMed Google Scholar
Fukuchi K, Nozaki S, Yoshizumi T, Hasegawa S, Uehara T, Nakagawa T et al. Enhanced myocardial glucose use in patients with a deficiency in long-chain fatty acid transport (CD36 deficiency). J Nucl Med 1999; 40: 239–243. CASPubMed Google Scholar
Hirano K, Kuwasako T, Nakagawa-Toyama Y, Janabi M, Yamashita S, Matsuzawa Y . Pathophysiology of human genetic CD36 deficiency. Trends Cardiovasc Med 2003; 13: 136–141. ArticleCASPubMed Google Scholar
Yamamoto N, Ikeda H, Tandon NN, Herman J, Tomiyama Y, Mitani T et al. A platelet membrane glycoprotein (GP) deficiency in healthy blood donors: Naka-platelets lack detectable GPIV(CD36). Blood 1990; 76: 1698–1703. CASPubMed Google Scholar
Watanabe K, Ohta Y, Toba K, Ogawa Y, Hanawa H, Hirokawa Y et al. Myocardial CD36 expression and fatty acid accumulation in patients with type I and II CD36 deficiency. Ann Nucl Med 1998; 12: 261–266. ArticleCASPubMed Google Scholar
Teraguchi M, Ikemoto Y, Unishi G, Ohkohchi H, Kobayashi Y . Influence of CD36 deficiency on heart disease in children. Circ J 2004; 68: 435–438. ArticleCASPubMed Google Scholar
Yanai H, Chiba H, Morimoto M, Abe K, Fujiwara H, Fuda H et al. Human CD36 deficiency is associated with elevation in low-density lipoprotein-cholesterol. Am J Med Genet 2000; 93: 299–304. ArticleCASPubMed Google Scholar
Miyaoka K, Kuwasako T, Hirano K, Nozaki S, Yamashita S, Matsuzawa Y . CD36 deficiency associated with insulin resistance. Lancet 2001; 357: 686–687. ArticleCASPubMed Google Scholar
Handberg A, Levin K, Højlund K, Beck-Nielsen H . Identification of the oxidized low-density lipoprotein scavenger receptor CD36 in plasma: a novel marker of insulin resistance. Circulation 2006; 114: 1169–1176. ArticleCASPubMed Google Scholar
Chmielewski M, Bragfors-Helin AC, Stenvinkel P, Lindholm B, Anderstam B . Serum soluble CD36, assessed by a novel monoclonal antibody-based sandwich ELISA, predicts cardiovascular mortality in dialysis patients. Clin Chim Acta 2010; 411: 2079–2082. ArticleCASPubMed Google Scholar
Handberg A, Højlund K, Gastaldelli A, Flyvbjerg A, Dekker JM, Petrie J et al. Plasma sCD36 is associated with markers of atherosclerosis, insulin resistance and fatty liver in a nondiabetic healthy population. J Intern Med 2012; 271: 294–304. ArticleCASPubMed Google Scholar