Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database (original) (raw)
Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011; 12: 745–755. ArticleCASPubMed Google Scholar
Goldstein DB, Allen A, Keebler J, Margulies EH, Petrou S, Petrovski S et al. Sequencing studies in human genetics: design and interpretation. Nat Rev Genet 2013; 14: 460–470. ArticleCASPubMedPubMed Central Google Scholar
MacArthur D, Manolio T, Dimmock D, Rehm H, Shendure J, Abecasis G et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014; 508: 469–476. ArticleCASPubMedPubMed Central Google Scholar
Ku C, Polychronakos C, Tan E, Naidoo N, Pawitan Y, Roukos D et al. A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Mol Psychiatry 2013; 18: 141–153. ArticleCASPubMed Google Scholar
Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 2012; 151: 1431–1442. ArticleCASPubMedPubMed Central Google Scholar
Yu TW, Chahrour MH, Coulter ME, Jiralerspong S, Okamura-Ikeda K, Ataman B et al. Using whole-exome sequencing to identify inherited causes of autism. Neuron 2013; 77: 259–273. ArticleCASPubMedPubMed Central Google Scholar
Hoischen A, Krumm N, Eichler EE . Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nature neuroscience 2014; 17: 764–772. ArticleCASPubMedPubMed Central Google Scholar
Krumm N, O'Roak BJ, Shendure J, Eichler EE . A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 2014; 37: 95–105. ArticleCASPubMed Google Scholar
Epi4K Consortium. De novo mutations in epileptic encephalopathies. Nature 2013; 501: 217–221.
Veltman JA, Brunner HG . De novo mutations in human genetic disease. Nat Rev Genet 2012; 13: 565–575. ArticleCASPubMed Google Scholar
Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012; 74: 285–299. ArticleCASPubMedPubMed Central Google Scholar
Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242–245. ArticleCASPubMedPubMed Central Google Scholar
O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250. ArticlePubMedPubMed Central Google Scholar
Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241. ArticleCASPubMedPubMed Central Google Scholar
Jiang Y-h, Yuen RK, Jin X, Wang M, Chen N, Wu X et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet 2013; 93: 249–263. ArticleCASPubMedPubMed Central Google Scholar
de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 2012; 367: 1921–1929. ArticleCASPubMed Google Scholar
Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 2012; 380: 1674–1682. ArticleCASPubMed Google Scholar
Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012; 44: 1365–1369. ArticleCASPubMedPubMed Central Google Scholar
Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184. CASPubMedPubMed Central Google Scholar
Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 2013; 154: 518–529. ArticleCASPubMedPubMed Central Google Scholar
Gratten J, Visscher PM, Mowry BJ, Wray NR . Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nat Genet 2013; 45: 234–238. ArticleCASPubMed Google Scholar
Sullivan PF, Daly MJ, O'Donovan M . Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012; 13: 537–551. ArticleCASPubMedPubMed Central Google Scholar
Crow JF . The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet 2000; 1: 40–47. ArticleCASPubMed Google Scholar
Eyre-Walker A, Keightley PD . The distribution of fitness effects of new mutations. Nat Rev Genet 2007; 8: 610–618. ArticleCASPubMed Google Scholar
Krumm N, O’Roak BJ, Shendure J, Eichler EE . A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 2014; 37: 95–105. ArticleCASPubMed Google Scholar
Poultney CS, Samocha K, Kou Y, Liu L, Walker S, Singh T et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014; 515: 209–215. ArticlePubMedPubMed Central Google Scholar
Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014; 515: 216–221. ArticleCASPubMedPubMed Central Google Scholar
Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164. ArticlePubMedPubMed Central Google Scholar
Liu X, Jian X, Boerwinkle E . dbNSFP v2. 0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat 2013; 34: E2393–E2402. ArticleCASPubMedPubMed Central Google Scholar
Kumar P, Henikoff S, Ng PC . Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073–1081. ArticleCASPubMed Google Scholar
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249. ArticleCASPubMedPubMed Central Google Scholar
Schwarz JM, Rödelsperger C, Schuelke M, Seelow D . MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010; 7: 575–576. ArticleCASPubMed Google Scholar
Reva B, Antipin Y, Sander C . Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 2011; 39: e118–e118. ArticleCASPubMedPubMed Central Google Scholar
Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 2013; 34: 57–65. ArticleCASPubMed Google Scholar
Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S . Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 2010; 6: e1001025. ArticlePubMedPubMed Central Google Scholar
Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A . Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 2010; 20: 110–121. ArticleCASPubMedPubMed Central Google Scholar
Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X . Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics 2009; 25: i54–i62. ArticleCASPubMedPubMed Central Google Scholar
Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 2011; 478: 476–482. ArticleCASPubMedPubMed Central Google Scholar
He X, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JS et al. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet 2013; 9: e1003671. ArticleCASPubMedPubMed Central Google Scholar
Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res 2013; 41: D996–D1008. ArticleCASPubMed Google Scholar
Miller JA, Ding S-L, Sunkin SM, Smith KA, Ng L, Szafer A et al. Transcriptional landscape of the prenatal human brain. Nature 2014; 508: 199–206. ArticleCASPubMedPubMed Central Google Scholar
Wang J, Duncan D, Shi Z, Zhang B., WEB-based GEne SeT . AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 2013; 41: W77–W83. ArticlePubMedPubMed Central Google Scholar
Wenger AM, Clarke SL, Notwell JH, Chung T, Tuteja G, Guturu H et al. The enhancer landscape during early neocortical development reveals patterns of dense regulation and co-option. PLoS Genet 2013; 9: e1003728. ArticleCASPubMedPubMed Central Google Scholar
Roshan R, Shridhar S, Sarangdhar MA, Banik A, Chawla M, Garg M et al. Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in miceRNA 2014; 20: 1287–1297.
Liao Y, Anttonen A-K, Liukkonen E, Gaily E, Maljevic S, Schubert S et al. SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain. Neurology 2010; 75: 1454–1458. ArticleCASPubMed Google Scholar
Lemke JR, Hendrickx R, Geider K, Laube B, Schwake M, Harvey RJ et al. GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann Neurol 2014; 75: 147–154. ArticleCASPubMedPubMed Central Google Scholar
Coe BP, Witherspoon K, Rosenfeld JA, van Bon BW, Vulto-van Silfhout AT, Bosco P et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 2014; 46: 1063–1071. ArticleCASPubMedPubMed Central Google Scholar
Liu L, Sabo A, Neale BM, Nagaswamy U, Stevens C, Lim E et al. Analysis of rare, exonic variation amongst subjects with autism spectrum disorders and population controls. PLoS Genet 2013; 9: e1003443. ArticleCASPubMedPubMed Central Google Scholar
Ben-David E, Shifman S . Combined analysis of exome sequencing points toward a major role for transcription regulation during brain development in autism. Mol Psychiatry 2012; 18: 1054–1056. ArticlePubMed Google Scholar
Schuurs-Hoeijmakers JH, Oh EC, Vissers LE, Swinkels ME, Gilissen C, Willemsen MA et al. Recurrent de novo mutations in PACS1 cause defective cranial-neural-crest migration and define a recognizable intellectual-disability syndrome. Am J Hum Genet 2012; 91: 1122–1127. ArticleCASPubMedPubMed Central Google Scholar
Carvill GL, Heavin SB, Yendle SC, McMahon JM, O'Roak BJ, Cook J et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013; 45: 825–830. ArticleCASPubMedPubMed Central Google Scholar
O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 2012; 338: 1619–1622. ArticleCASPubMedPubMed Central Google Scholar
Stessman HA, Bernier R, Eichler EE . A genotype-first approach to defining the subtypes of a complex disease. Cell 2014; 156: 872–877. ArticleCASPubMedPubMed Central Google Scholar
Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 2014; 158: 263–276. ArticleCASPubMedPubMed Central Google Scholar
Helsmoortel C, Vulto-van Silfhout AT, Coe BP, Vandeweyer G, Rooms L, van den Ende J et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet 2014; 46: 380–384. ArticleCASPubMedPubMed Central Google Scholar
Albert PR, Vahid-Ansari F, Luckhart C . Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre-and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci 2014; 8: 199. ArticlePubMedPubMed Central Google Scholar
Vulto-van Silfhout AT, Rajamanickam S, Jensik PJ, Vergult S, de Rocker N, Newhall KJ et al. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems. Am J Hum Genet 2014; 94: 649–661. ArticleCASPubMedPubMed Central Google Scholar
Hamilton PJ, Campbell NG, Sharma S, Erreger K, Hansen FH, Saunders C et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry 2013; 18: 1315–1323. ArticleCASPubMedPubMed Central Google Scholar
Ronemus M, Iossifov I, Levy D, Wigler M . The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet 2014; 15: 133–141. ArticleCASPubMed Google Scholar
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012; 337: 1190–1195. ArticleCASPubMedPubMed Central Google Scholar
Khurana E, Fu Y, Colonna V, Mu XJ, Kang HM, Lappalainen T et al. Integrative annotation of variants from 1092 humans: application to cancer genomics. Science 2013; 342: 1235587. ArticlePubMedPubMed Central Google Scholar
Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS . A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003; 9: 1274–1281. ArticleCASPubMedPubMed Central Google Scholar
Maffioletti E, Tardito D, Gennarelli M, Bocchio-Chiavetto L . Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders. Front Cell Neurosci 2014; 8: 75. ArticlePubMedPubMed Central Google Scholar
Xu B, Hsu PK, Karayiorgou M, Gogos JA . MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis 2012; 46: 291–301. ArticleCASPubMedPubMed Central Google Scholar
Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2013; 155: 1008–1021. ArticleCASPubMedPubMed Central Google Scholar
Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 2013; 155: 997–1007. ArticleCASPubMedPubMed Central Google Scholar
Hormozdiari F, Penn O, Borenstein E, Eichler E . The discovery of integrated gene networks for autism and related disorders. Genome Res 2014; 25: 142–154, gr. 178855.178114. ArticlePubMed Google Scholar
Zhu X, Need AC, Petrovski S, Goldstein DB . One gene, many neuropsychiatric disorders: lessons from Mendelian diseases. Nat Neurosci 2014; 17: 773–781. ArticleCASPubMed Google Scholar
Cristino A, Williams S, Hawi Z, An J, Bellgrove M, Schwartz C et al. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry 2013; 19: 294–301. ArticlePubMed Google Scholar
McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry 2014; 19: 652–658. ArticleCASPubMedPubMed Central Google Scholar