- Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287–309 (2006).
Article CAS Google Scholar
- Midwood, K. S., Williams, L. V. & Schwarzbauer, J. E. Tissue repair and the dynamics of the extracellular matrix. Int. J. Biochem. Cell Biol. 36, 1031–1037 (2004).
Article CAS Google Scholar
- Vlodavsky, I. et al. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl Acad. Sci. USA 84, 2292–2296 (1987).
Article CAS Google Scholar
- Wipff, P.-J., Rifkin, D. B., Meister, J.-J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).
Article CAS Google Scholar
- Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).
Article CAS Google Scholar
- Blau, H. et al. Plasticity of the differentiated state. Science 230, 758–766 (1985).
Article CAS Google Scholar
- Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A. & Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 21, 3307–3329 (2009).
Article CAS Google Scholar
- Place, E. S., Evans, N. D. & Stevens, M. M. Complexity in biomaterials for tissue engineering. Nat. Mater. 8, 457–470 (2009).
Article CAS Google Scholar
- Fisher, O. Z., Khademhosseini, A., Langer, R. & Peppas, N. A. Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43, 419–428 (2010).
Article CAS Google Scholar
- Burdick, J. A. & Murphy, W. L. Moving from static to dynamic complexity in hydrogel design. Nat. Commun. 3, 1269 (2012).
Article Google Scholar
- Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).
Article CAS Google Scholar
- Nowak, A. P. et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002).
Article CAS Google Scholar
- Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).
Article CAS Google Scholar
- Buwalda, S. J. et al. Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Release 190, 254–273 (2014).
Article CAS Google Scholar
- Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
Article CAS Google Scholar
- Wang, Y.-L. & Pelham, R. J. Jr in Methods in Enzymology (ed. Richard, B. V. ) 489–496 (Academic Press, 1998).
Google Scholar
- Pelham, R. J. Jr & Wang, Y.-l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).
Article CAS Google Scholar
- Dvir, T., Timko, B. P., Kohane, D. S. & Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nano 6, 13–22 (2011).
Article CAS Google Scholar
- Roy, D., Cambre, J. N. & Sumerlin, B. S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278–301 (2010).
Article CAS Google Scholar
- Zhang, J. & Peppas, N. A. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(_N_-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33, 102–107 (2000).
Article CAS Google Scholar
- Lowman, A. M., Morishita, M., Kajita, M., Nagai, T. & Peppas, N. A. Oral delivery of insulin using pH-responsive complexation gels. J. Pharm. Sci. 88, 933–937 (1999).
Article CAS Google Scholar
- Hoffman, A. S. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J. Control. Release 6, 297–305 (1987).
Article CAS Google Scholar
- Cole, M. A., Voelcker, N. H., Thissen, H. & Griesser, H. J. Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials 30, 1827–1850 (2009).
Article CAS Google Scholar
- Yeo, W.-S., Yousaf, M. N. & Mrksich, M. Dynamic interfaces between cells and surfaces: electroactive substrates that sequentially release and attach cells. J. Am. Chem. Soc. 125, 14994–14995 (2003).
Article CAS Google Scholar
- Zrí nyi, M. Intelligent polymer gels controlled by magnetic fields. Colloid Polym. Sci. 278, 98–103 (2000).
Article Google Scholar
- Kloxin, A. M., Kloxin, C. J., Bowman, C. N. & Anseth, K. S. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 22, 3484–3494 (2010).
Article CAS Google Scholar
- Miyata, T., Uragami, T. & Nakamae, K. Biomolecule-sensitive hydrogels. Adv. Drug Delivery Rev. 54, 79–98 (2002).
Article CAS Google Scholar
- Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999).
Article CAS Google Scholar
- Miyata, T., Jikihara, A., Nakamae, K. & Hoffman, A. S. Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose. J. Biomater. Sci. Polym. Ed. 15, 1085–1098 (2004).
Article CAS Google Scholar
- Hassan, C. M., Doyle, F. J. & Peppas, N. A. Dynamic behavior of glucose-responsive poly(methacrylic acid-_g_-ethylene glycol) hydrogels. Macromolecules 30, 6166–6173 (1997).
Article CAS Google Scholar
- Kost, J. & Langer, R. Responsive polymeric delivery systems. Adv. Drug Delivery Rev. 64 (Suppl.), 327–341 (2012).
Article Google Scholar
- Bryant, S. J. & Anseth, K. S. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J. Biomed. Mater. Res. Part A 64A, 70–79 (2003).
Article CAS Google Scholar
- Zustiak, S. P. & Leach, J. B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11, 1348–1357 (2010).
Article CAS Google Scholar
- Metters, A. T., Anseth, K. S. & Bowman, C. N. Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41, 3993–4004 (2000).
Article CAS Google Scholar
- Chung, C., Beecham, M., Mauck, R. L. & Burdick, J. A. The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells. Biomaterials 30, 4287–4296 (2009).
Article CAS Google Scholar
- Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).
Article CAS Google Scholar
- Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).
Article CAS Google Scholar
- Baker, B. M. & Chen, C. S. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).
CAS Google Scholar
- Hynes, R. O. Extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).
Article CAS Google Scholar
- Martino, M. M. & Hubbell, J. A. The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 24, 4711–4721 (2010).
CAS Google Scholar
- Droguett, R., Cabello-Verrugio, C., Riquelme, C. & Brandan, E. Extracellular proteoglycans modify TGF-β bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biol. 25, 332–341 (2006).
Article CAS Google Scholar
- Baneyx, G., Baugh, L. & Vogel, V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl Acad. Sci. USA 99, 5139–5143 (2002).
Article CAS Google Scholar
- Baldwin, A. D. & Kiick, K. L. Polysaccharide-modified synthetic polymeric biomaterials. Biopolymers 94, 128–140 (2010).
Article CAS Google Scholar
- Lin, C.-C. & Anseth, K. S. Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv. Funct. Mater. 19, 2325–2331 (2009).
Article CAS Google Scholar
- McCall, J. D., Lin, C.-C. & Anseth, K. S. Affinity peptides protect transforming growth factor β during encapsulation in poly(ethylene glycol) hydrogels. Biomacromolecules 12, 1051–1057 (2011).
Article CAS Google Scholar
- Azagarsamy, M. A. & Anseth, K. S. Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds. ACS macro Lett. 2, 5–9 (2013).
Article CAS Google Scholar
- Nimmo, C. M. & Shoichet, M. S. Regenerative biomaterials that “click”: simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning. Bioconjugate Chem. 22, 2199–2209 (2011).
Article CAS Google Scholar
- DeForest, C. A. & Anseth, K. S. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. Engl. 51, 1816–1819 (2012).
Article CAS Google Scholar
- DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).
Article CAS Google Scholar
- Azagarsamy, M. A. & Anseth, K. S. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew. Chem. Int. Ed. Engl. 52, 13803–13807 (2013).
Article CAS Google Scholar
- Sur, S., Matson, J. B., Webber, M. J., Newcomb, C. J. & Stupp, S. I. Photodynamic control of bioactivity in a nanofiber matrix. ACS Nano 6, 10776–10785 (2012).
Article CAS Google Scholar
- Lee, T. T. et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14, 352–360 (2015).
Article CAS Google Scholar
- Petersen, S. et al. Phototriggering of cell adhesion by caged cyclic RGD peptides. Angew. Chem. Int. Ed. Engl. 47, 3192–3195 (2008).
Article CAS Google Scholar
- Gandavarapu, N. R., Azagarsamy, M. A. & Anseth, K. S. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv. Mater. 26, 2521–2526 (2014).
Article CAS Google Scholar
- Roberts, M. C., Hanson, M. C., Massey, A. P., Karren, E. A. & Kiser, P. F. Dynamically restructuring hydrogel networks formed with reversible covalent crosslinks. Adv. Mater. 19, 2503–2507 (2007).
Article CAS Google Scholar
- Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679–2684 (2006).
Article CAS Google Scholar
- Soman, P., Chung, P. H., Zhang, A. P. & Chen, S. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol. Bioeng. 110, 3038–3047 (2013).
Article CAS Google Scholar
- Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011).
Article CAS Google Scholar
- Mosiewicz, K. A. et al. In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12, 1072–1078 (2013).
Article CAS Google Scholar
- Auernheimer, J., Dahmen, C., Hersel, U., Bausch, A. & Kessler, H. Photoswitched cell adhesion on surfaces with RGD peptides. J. Am. Chem. Soc. 127, 16107–16110 (2005).
Article CAS Google Scholar
- Li, W. et al. Noninvasive and reversible cell adhesion and detachment via single-wavelength near-infrared laser mediated photoisomerization. J. Am. Chem. Soc. 137, 8199–8205 (2015).
Article CAS Google Scholar
- Bryant, S. J., Nuttelman, C. R. & Anseth, K. S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000).
Article CAS Google Scholar
- Liu, B., Liu, Y., Riesberg, J. J. & Shen, W. Dynamic presentation of immobilized ligands regulated through biomolecular recognition. J. Am. Chem. Soc. 132, 13630–13632 (2010).
Article CAS Google Scholar
- Zhang, Z., Chen, N., Li, S., Battig, M. R. & Wang, Y. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J. Am. Chem. Soc. 134, 15716–15719 (2012).
Article CAS Google Scholar
- Li, S., Gaddes, E. R., Chen, N. & Wang, Y. Molecular encryption and reconfiguration for remodeling of dynamic hydrogels. Angew. Chem. Int. Ed. Engl. 54, 5957–5961 (2015).
Article CAS Google Scholar
- Zhang, Z., Li, S., Chen, N., Yang, C. & Wang, Y. Programmable display of DNA–protein chimeras for controlling cell–hydrogel interactions via reversible intermolecular hybridization. Biomacromolecules 14, 1174–1180 (2013).
Article CAS Google Scholar
- Yang, J. et al. A near-infrared light-controlled system for reversible presentation of bioactive ligands using polypeptide-engineered functionalized gold nanorods. Chem. Commun. 51, 2569–2572 (2015).
Article CAS Google Scholar
- Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).
Article CAS Google Scholar
- Boekhoven, J., Rubert Pé rez, C. M., Sur, S., Worthy, A. & Stupp, S. I. Dynamic display of bioactivity through host–guest chemistry. Angew. Chem. Int. Ed. Engl. 52, 12077–12080 (2013).
Article CAS Google Scholar
- Neirynck, P. et al. Carborane-β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces. J. Mater. Chem. B 3, 539–545 (2015).
Article CAS Google Scholar
- Cabanas-Danés, J. et al. A supramolecular host–guest carrier system for growth factors employing VHH fragments. J. Am. Chem. Soc. 136, 12675–12681 (2014).
Article Google Scholar
- Brinkmann, J. et al. About supramolecular systems for dynamically probing cells. Chem. Soc. Rev. 43, 4449–4469 (2014).
Article CAS Google Scholar
- Seo, J.-H. et al. Inducing rapid cellular response on RGD-binding threaded macromolecular surfaces. J. Am. Chem. Soc. 135, 5513–5516 (2013).
Article CAS Google Scholar
- Kakinoki, S. et al. Mobility of the Arg–Gly–Asp ligand on the outermost surface of biomaterials suppresses integrin-mediated mechanotransduction and subsequent cell functions. Acta Biomater. 13, 42–51 (2015).
Article CAS Google Scholar
- Seo, J.-H., Kakinoki, S., Yamaoka, T. & Yui, N. Directing stem cell differentiation by changing the molecular mobility of supramolecular surfaces. Adv. Healthcare Mater. 4, 215–222 (2015).
Article CAS Google Scholar
- Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).
Article CAS Google Scholar
- Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).
Article CAS Google Scholar
- Hautanen, A., Gailit, J., Mann, D. M. & Ruoslahti, E. Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J. Biol. Chem. 264, 1437–1442 (1989).
Article CAS Google Scholar
- Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715 (1996).
Article CAS Google Scholar
- Foley, T. L. & Burkart, M. D. Site-specific protein modification: advances and applications. Curr. Opin. Chem. Biol. 11, 12–19 (2007).
Article CAS Google Scholar
- West, J. L. & Hubbell, J. A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32, 241–244 (1999).
Article CAS Google Scholar
- Kraehenbuehl, T. P. et al. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29, 2757–2766 (2008).
Article CAS Google Scholar
- Kyburz, K. A. & Anseth, K. S. Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density. Acta Biomater. 9, 6381–6392 (2013).
Article CAS Google Scholar
- Patterson, J. & Hubbell, J. A. Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31, 7836–7845 (2010).
Article CAS Google Scholar
- Cameron, A. R., Frith, J. E. & Cooper-White, J. J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32, 5979–5993 (2011).
Article CAS Google Scholar
- Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6364 (2015).
Article Google Scholar
- Wang, H. & Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 27, 3717–3736 (2015).
Article CAS Google Scholar
- Bowman, C. N. & Kloxin, C. J. Covalent adaptable networks: reversible bond structures incorporated in polymer networks. Angew. Chem. Int. Ed. Engl. 51, 4272–4274 (2012).
Article CAS Google Scholar
- McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Bis-aliphatic hydrazone-linked hydrogels form most rapidly at physiological pH: identifying the origin of hydrogel properties with small molecule kinetic studies. Chem. Mater. 26, 2382–2387 (2014).
Article CAS Google Scholar
- McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Hydrogels: biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26, 865–872 (2014).
Article CAS Google Scholar
- McKinnon, D. D. et al. Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels. Soft Matter 10, 9230–9236 (2014).
Article CAS Google Scholar
- Yan, S. et al. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules 15, 4495–4508 (2014).
Article CAS Google Scholar
- Dahlmann, J. et al. Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34, 940–951 (2013).
Article CAS Google Scholar
- Gurski, L. A., Jha, A. K., Zhang, C., Jia, X. & Farach-Carson, M. C. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials 30, 6076–6085 (2009).
Article CAS Google Scholar
- Yang, B. et al. Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polym. Chem. 3, 3235–3238 (2012).
Article CAS Google Scholar
- Tan, H., Chu, C. R., Payne, K. A. & Marra, K. G. Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30, 2499–2506 (2009).
Article CAS Google Scholar
- Weng, L., Romanov, A., Rooney, J. & Chen, W. Non-cytotoxic, in situ gelable hydrogels composed of _N_-carboxyethyl chitosan and oxidized dextran. Biomaterials 29, 3905–3913 (2008).
Article CAS Google Scholar
- Zhao, X., Huebsch, N., Mooney, D. J. & Suo, Z. Stress-relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys. 107, 063509 (2010).
Article Google Scholar
- Rodell, C. B., Wade, R. J., Purcell, B. P., Dusaj, N. N. & Burdick, J. A. Selective proteolytic degradation of guest–host assembled, injectable hyaluronic acid hydrogels. ACS biomater. Sci. Eng. 1, 277–286 (2015).
Article CAS Google Scholar
- Liao, X., Chen, G. & Jiang, M. Hydrogels locked by molecular recognition aiming at responsiveness and functionality. Polym. Chem. 4, 1733–1745 (2013).
Article CAS Google Scholar
- Park, K. M. et al. In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6, 2960–2968 (2012).
Article CAS Google Scholar
- Dankers, P. Y. W., Harmsen, M. C., Brouwer, L. A., Van Luyn, M. J. A. & Meijer, E. W. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 4, 568–574 (2005).
Article CAS Google Scholar
- Wong Po Foo, C. T. S., Lee, J. S., Mulyasasmita, W., Parisi-Amon, A. & Heilshorn, S. C. Two-component protein-engineered physical hydrogels for cell encapsulation. Proc. Natl Acad. Sci. USA 106, 22067–22072 (2009).
Article Google Scholar
- Cai, L., Dewi, R. E. & Heilshorn, S. C. Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells. Adv. Funct. Mater. 25, 1344–1351 (2015).
Article CAS Google Scholar
- Sathaye, S. et al. Engineering complementary hydrophobic interactions to control β-hairpin peptide self-assembly, network branching, and hydrogel properties. Biomacromolecules 15, 3891–3900 (2014).
Article CAS Google Scholar
- Glassman, M. J., Chan, J. & Olsen, B. D. Reinforcement of shear thinning protein hydrogels by responsive block copolymer self-assembly. Adv. Funct. Mater. 23, 1182–1193 (2013).
Article CAS Google Scholar
- Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).
Article CAS Google Scholar
- McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).
Article CAS Google Scholar
- Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).
Article CAS Google Scholar
- Ito, F. et al. Reversible hydrogel formation driven by protein–peptide-specific interaction and chondrocyte entrapment. Biomaterials 31, 58–66 (2010).
Article CAS Google Scholar
- Lu, H. D., Charati, M. B., Kim, I. L. & Burdick, J. A. Injectable shear-thinning hydrogels engineered with a self-assembling dock-and-lock mechanism. Biomaterials 33, 2145–2153 (2012).
Article CAS Google Scholar
- Shen, W., Kornfield, J. A. & Tirrell, D. A. Dynamic properties of artificial protein hydrogels assembled through aggregation of leucine zipper peptide domains. Macromolecules 40, 689–692 (2007).
Article CAS Google Scholar
- Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006).
Article CAS Google Scholar
- Lampe, K. J., Antaris, A. L. & Heilshorn, S. C. Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth. Acta Biomater. 9, 5590–5599 (2013).
Article CAS Google Scholar
- Rodell, C. B., Kaminski, A. L. & Burdick, J. A. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14, 4125–4134 (2013).
Article CAS Google Scholar
- Parisi-Amon, A., Mulyasasmita, W., Chung, C. & Heilshorn, S. C. Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv. Healthcare Mater. 2, 428–432 (2013).
Article CAS Google Scholar
- Haines-Butterick, L. et al. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl Acad. Sci. USA 104, 7791–7796 (2007).
Article CAS Google Scholar
- Zhang, J. et al. Physically associated synthetic hydrogels with long-term covalent stabilization for cell culture and stem cell transplantation. Adv. Mater. 23, 5098–5103 (2011).
Article CAS Google Scholar
- Rodell, C. B. et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv. Funct. Mater. 25, 636–644 (2015).
Article CAS Google Scholar
- Newcomb, C. J. et al. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nat. Commun. 5, 3321 (2014).
Article Google Scholar
- Baker, B. M. et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14, 1262–1268 (2015).
Article CAS Google Scholar
- Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).
Article CAS Google Scholar
- Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).
Article CAS Google Scholar
- Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).
Article CAS Google Scholar
- Liu, Z. et al. Spatiotemporally controllable and cytocompatible approach builds 3D cell culture matrix by photo-uncaged-thiol michael addition reaction. Adv. Mater. 26, 3912–3917 (2014).
Article CAS Google Scholar
- Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012).
Article Google Scholar
- He, M., Li, J., Tan, S., Wang, R. & Zhang, Y. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J. Am. Chem. Soc. 135, 18718–18721 (2013).
Article CAS Google Scholar
- Jiang, F. X., Yurke, B., Schloss, R. S., Firestein, B. L. & Langrana, N. A. The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel. Biomaterials 31, 1199–1212 (2010).
Article CAS Google Scholar
- Jiang, F. X., Yurke, B., Schloss, R. S., Firestein, B. L. & Langrana, N. A. Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel. Tissue Eng. Part A 16, 1873–1889 (2010).
Article CAS Google Scholar
- Peng, L. et al. Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. J. Am. Chem. Soc. 134, 12302–12307 (2012).
Article CAS Google Scholar
- Lin, D. C., Yurke, B. & Langrana, N. A. Inducing reversible stiffness changes in DNA-crosslinked gels. J. Mater. Res. 20, 1456–1464 (2005).
Article CAS Google Scholar
- Lin, D. C., Yurke, B. & Langrana, N. A. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126, 104–110 (2004).
Article Google Scholar
- Murphy, W. L. Emerging area: biomaterials that mimic and exploit protein motion. Soft Matter 7, 3679–3688 (2011).
Article CAS Google Scholar
- Ehrick, J. D. et al. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat. Mater. 4, 298–302 (2005).
Article CAS Google Scholar
- Murphy, W. L., Dillmore, W. S., Modica, J. & Mrksich, M. Dynamic hydrogels: translating a protein conformational change into macroscopic motion. Angew. Chem. Int. Ed. Engl. 46, 3066–3069 (2007).
Article CAS Google Scholar
- Yuan, W., Yang, J., Kopečková, P. & Kopeček, J. Smart hydrogels containing adenylate kinase: translating substrate recognition into macroscopic motion. J. Am. Chem. Soc. 130, 15760–15761 (2008).
Article CAS Google Scholar
- Tang, S., Glassman, M. J., Li, S., Socrate, S. & Olsen, B. D. Oxidatively responsive chain extension to entangle engineered protein hydrogels. Macromolecules 47, 791–799 (2014).
Article CAS Google Scholar
- Kong, N., Peng, Q. & Li, H. Rationally designed dynamic protein hydrogels with reversibly tunable mechanical properties. Adv. Funct. Mater. 24, 7310–7317 (2014).
Article CAS Google Scholar
- Rosales, A. M., Mabry, K. M., Nehls, E. M. & Anseth, K. S. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015).
Article CAS Google Scholar
- Tamesue, S., Takashima, Y., Yamaguchi, H., Shinkai, S. & Harada, A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. Engl. 49, 7461–7464 (2010).
Article CAS Google Scholar
- Gillette, B. M., Jensen, J. A., Wang, M., Tchao, J. & Sia, S. K. Dynamic hydrogels: switching of 3D microenvironments using two-component naturally derived extracellular matrices. Adv. Mater. 22, 686–691 (2010).
Article CAS Google Scholar
- Stowers, R. S., Allen, S. C. & Suggs, L. J. Dynamic phototuning of 3D hydrogel stiffness. Proc. Natl Acad. Sci. USA 112, 1953–1958 (2015).
Article CAS Google Scholar
- Seiffert, S. & Weitz, D. A. Microfluidic fabrication of smart microgels from macromolecular precursors. Polymer 51, 5883–5889 (2010).
Article CAS Google Scholar
- Shah, R. K., Kim, J.-W., Agresti, J. J., Weitz, D. A. & Chu, L.-Y. Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter 4, 2303–2309 (2008).
Article CAS Google Scholar
- Das, M., Zhang, H. & Kumacheva, E. Microgels: old materials with new applications. Annu. Rev. Mater. Res. 36, 117–142 (2006).
Article CAS Google Scholar
- Panda, P. et al. Stop-flow lithography to generate cell-laden microgel particles. Lab. Chip 8, 1056–1061 (2008).
Article CAS Google Scholar
- Xu, S. et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Ed. Engl. 44, 724–728 (2005).
Article CAS Google Scholar
- Shen, Q. et al. Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv. Mater. 25, 2368–2373 (2013).
Article CAS Google Scholar
- Deng, Y. et al. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci. Rep. 4, 7499 (2014).
Article CAS Google Scholar
- Zhao, W. et al. Bioinspired multivalent DNA network for capture and release of cells. Proc. Natl Acad. Sci. USA 109, 19626–19631 (2012).
Article CAS Google Scholar
- Liu, H. et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 135, 7603–7609 (2013).
Article CAS Google Scholar
- Ouyang, J. et al. Morphology controlled poly(aminophenylboronic acid) nanostructures as smart substrates for enhanced capture and release of circulating tumor cells. Adv. Funct. Mater. 25, 6122–6130 (2015).
Article CAS Google Scholar
- Pan, G. et al. Dynamic introduction of cell adhesive factor via reversible multicovalent phenylboronic acid/_cis_-diol polymeric complexes. J. Am. Chem. Soc. 136, 6203–6206 (2014).
Article CAS Google Scholar
- Li, W., Wang, J., Ren, J. & Qu, X. 3D graphene oxide–polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release. Adv. Mater. 25, 6737–6743 (2013).
Article CAS Google Scholar
- Hyun, J., Lee, W.-K., Nath, N., Chilkoti, A. & Zauscher, S. Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide “switches”. J. Am. Chem. Soc. 126, 7330–7335 (2004).
Article CAS Google Scholar
- Mabry, K. M., Lawrence, R. L. & Anseth, K. S. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials 49, 47–56 (2015).
Article CAS Google Scholar
- Tsien, R. Y. Constructing and exploiting the fluorescent protein paintbox (Nobel lecture). Angew. Chem. Int. Ed. Engl. 48, 5612–5626 (2009).
Article CAS Google Scholar
- Dean, K. M. & Palmer, A. E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014).
Article CAS Google Scholar
- Legant, W. R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Meth 7, 969–971 (2010).
Article CAS Google Scholar
- Schultz, K. M. & Anseth, K. S. Monitoring degradation of matrix metalloproteinases-cleavable PEG hydrogels via multiple particle tracking microrheology. Soft Matter 9, 1570–1579 (2013).
Article CAS Google Scholar
- Bloom, R. J., George, J. P., Celedon, A., Sun, S. X. & Wirtz, D. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95, 4077–4088 (2008).
Article CAS Google Scholar
- Watt, F. M. & Huck, W. T. S. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 14, 467–473 (2013).
Article CAS Google Scholar
- Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).
Article CAS Google Scholar
- Manduca, A. et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med. Image Anal. 5, 237–254 (2001).
Article CAS Google Scholar
- Othman, S. F., Xu, H., Royston, T. J. & Magin, R. L. Microscopic magnetic resonance elastography (μMRE). Magn. Reson. Med. 54, 605–615 (2005).
Article Google Scholar
- Othman, S. F., Xu, H. & Mao, J. J. Future role of MR elastography in tissue engineering and regenerative medicine. J. Tissue Eng. Regener. Med. 9, 481–487 (2015).
Article CAS Google Scholar
- Ranga, A. & Lutolf, M. P. High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. Curr. Opin. Cell Biol. 24, 236–244 (2012).
Article CAS Google Scholar
- Zanella, F., Lorens, J. B. & Link, W. High content screening: seeing is believing. Trends Biotechnol. 28, 237–245 (2010).
Article CAS Google Scholar
- Megason, S. G. & Fraser, S. E. Imaging in systems biology. Cell 130, 784–795 (2007).
Article CAS Google Scholar
- Chen, W. L. K., Likhitpanichkul, M., Ho, A. & Simmons, C. A. Integration of statistical modeling and high-content microscopy to systematically investigate cell–substrate interactions. Biomaterials 31, 2489–2497 (2010).
Article CAS Google Scholar
- Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).
Article CAS Google Scholar
- Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).
Article CAS Google Scholar
- Culver, J. C. et al. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv. Mater. 24, 2344–2348 (2012).
Article CAS Google Scholar
- Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).
Article CAS Google Scholar
- Appel, E. A., del Barrio, J., Loh, X. J. & Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012).
Article CAS Google Scholar
- Cheng, E. et al. A pH-triggered, fast-responding DNA hydrogel. Angew. Chem. Int. Ed. Engl. 48, 7660–7663 (2009).
Article CAS Google Scholar