Emerging links between hypermutation of antibody genes and DNA polymerases (original) (raw)
Brenner, S. & Milstein, C. Origin of antibody variation. Nature211, 242–243 (1966). ArticleCAS Google Scholar
Hood, L. & Talmage, D. W. Mechanism of antibody diversity: germ line basis for variability. Science168, 325–334 (1970). ArticleCAS Google Scholar
Weigert, M. G., Cesari, I. M., Yonkovich, S. J. & Cohn, M. Variability in the lambda light chain sequences of mouse antibody. Nature228, 1045–1047 (1970). ArticleCAS Google Scholar
Bernard, O., Hozumi, N. & Tonegawa, S. Sequences of mouse immunoglobulin light chain genes before and after somatic changes. Cell15, 1133–1144 (1978). ArticleCAS Google Scholar
Crews, S., Griffin, J., Huang, H., Calame, K. & Hood, L. A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell25, 59–66 (1981). ArticleCAS Google Scholar
Selsing, E. & Storb, U. Somatic mutation of immunoglobulin light-chain variable-region genes. Cell25, 47–58 (1981). ArticleCAS Google Scholar
Pech, M., Höchtl, J., Schnell, H. & Zachau, H. G. Differences between germ-line and rearranged immunoglobulin Vκ coding sequences suggest a localized mutation mechanism. Nature291, 668–670 (1981). ArticleCAS Google Scholar
Kim, S., Davis, M., Sinn, E., Patten, P. & Hood, L. Antibody diversity: somatic hypermutation of rearranged VH genes. Cell27, 573–581 (1981). ArticleCAS Google Scholar
Gearhart, P. J. & Bogenhagen, D. F. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc. Natl Acad. Sci. USA80, 3439–3443 (1983). ArticleCAS Google Scholar
Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature354, 389–392 (1991). ArticleCAS Google Scholar
Jacob, J., Przylepa, J., Miller, C. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J. Exp. Med.178, 1293–1307 (1993). ArticleCAS Google Scholar
González-Fernández, A. & Milstein, C. Analysis of somatic hypermutation in mouse Peyer's patches using immunoglobulin κ light-chain transgenes. Proc. Natl Acad. Sci. USA90, 9862–9866 (1993). Article Google Scholar
Pascual, V. et al. Analysis of somatic mutation in five B cell subsets of human tonsil. J. Exp. Med. 180, 329–339 (1994). ArticleCAS Google Scholar
Liu, Y.-J. et al. Mechanism of antigen-driven selection in germinal centres. Nature342, 929–931 (1989). ArticleCAS Google Scholar
Griffiths, G. M., Berek, C., Kaartinen, M. & Milstein, C. Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature312, 271–275 (1984). ArticleCAS Google Scholar
Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell102, 565–575 (2000). ArticleCAS Google Scholar
Lebecque, S. & Gearhart, P. J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is about 1 kb from V(D)J gene. J. Exp. Med.172, 1717–1727 (1990). ArticleCAS Google Scholar
O'Brien, R. L., Brinster, R. L. & Storb, U. Somatic hypermutation of an immunoglobulin transgene in κ transgenic mice. Nature326, 405–409 (1987). ArticleCAS Google Scholar
Yélamos, J. et al. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature376, 225–229 (1995). Article Google Scholar
Betz, A. G. et al. Elements regulating somatic hypermutation of an immunoglobulin κ gene: critical role for the intron enhancer/matrix attachment region. Cell77, 239–248 (1994). ArticleCAS Google Scholar
Peters, A. & Storb, U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity4, 57–65 (1996). ArticleCAS Google Scholar
Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science280, 1750–1752 (1998). ArticleCAS Google Scholar
Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature412, 341–346 (2001). ArticleCAS Google Scholar
Rogozin, I. B. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochem. Biophys. Acta1171, 11–18 (1992). CASPubMed Google Scholar
Foster, S. J., Dörner, T. & Lipsky, P. E. Somatic hypermutation of VκJκ rearrangements: targeting of RGYW motifs on both DNA strands and preferential selection of mutated codons within RGYW motifs. Eur. J. Immunol. 29, 4011–4021 (1999). ArticleCAS Google Scholar
Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes. Nature408, 216–221 (2000). ArticleCAS Google Scholar
Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity13, 589–597 (2000). ArticleCAS Google Scholar
Kong, Q. & Maizels, N. DNA breaks in hypermutating immunoglobulin genes: evidence for a break-and-repair pathway of somatic hypermutation. Genetics158, 369–378 (2001). CASPubMedPubMed Central Google Scholar
Wood, R. D. DNA repair: knockouts still mutating after first round. Curr. Biol. 8, R757–R760 (1998). ArticleCAS Google Scholar
Weill, J.-C. et al. Ig gene hypermutation: a mechanism is due. Adv. Immunol. (in the press).
Golding, G. B., Gearhart, P. J. & Glickman, B. W. Patterns of somatic mutations in immunoglobulin variable genes. Genetics115, 169–176 (1987). CASPubMedPubMed Central Google Scholar
Smith, D. S. et al. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J. Immunol. 156, 2642–2652 (1996). CASPubMed Google Scholar
Spencer, J., Dunn, M. & Dunn-Walters, D. K. Characteristics of sequences around individual nucleotide substitutions in IgVH genes suggest different GC and AT mutators. J. Immunol. 162, 6596–6601 (1999). CASPubMed Google Scholar
Milstein, C., Neuberger, M. S. & Staden, R. Both DNA strands of antibody genes are hypermutation targets. Proc. Natl Acad. Sci. USA95, 8791–8794 (1998). ArticleCAS Google Scholar
Snow, E. T., Kunkel, T. A. & Loeb, L. A. Base substitution mutagenesis by terminal transferase: its role in somatic mutagenesis. Mutat. Res. 180, 137–146 (1987). ArticleCAS Google Scholar
Texidó, G. et al. Somatic hypermutation occurs in B cells of terminal deoxynucleotidyl transferase-, CD23-, interleukin-4-, IgD- and CD30-deficient mouse mutants. Eur. J. Immunol. 26, 1966–1969 (1996). Article Google Scholar
Steele, E. J. & Blanden, R. V. The reverse transcriptase model of somatic hypermutation. Phil. Trans. R. Soc. Lond. B356, 61–66 (2001). ArticleCAS Google Scholar
Esposito, G. et al. Mice reconstituted with DNA polymerase β-deficient fetal liver cells are able to mount a T cell-dependent immune response and mutate their Ig genes normally. Proc. Natl Acad. Sci. USA97, 1166–1171 (2000). ArticleCAS Google Scholar
Ohashi, E. et al. Fidelity and processivity of DNA synthesis by DNA polymerase κ, the product of the human DINB1 gene. J. Biol. Chem. 275, 39678–39684 (2000). ArticleCAS Google Scholar
Oshige, M., Aoyagi, N., Harris, P. V., Burtis, K. C. & Sakaguchi, K. A new DNA polymerase species from Drosophila melanogaster: a probable mus308 gene product. Mutat. Res. 433, 183–192 (1999). ArticleCAS Google Scholar
Garcia-Diaz, M. et al. DNA polymerase lambda (Pol λ), a novel eukaryotic DNA polymerase with a potential role in meiosis. J. Mol. Biol. 301, 851–867 (2000). ArticleCAS Google Scholar
Carson, E. R. & Christman, M. F. Evidence that replication fork components catalyze establishment of cohesion between sister chromatids. Proc. Natl Acad. Sci. USA98, 8270–8275 (2001). ArticleCAS Google Scholar
Lawrence, C. W. & Maher, V. M. Mutagenesis in eukaryotes dependent on DNA polymerase zeta and Rev1p. Philos Trans R Soc Lond B Biol Sci356, 41–46 (2001). ArticleCAS Google Scholar
Holbeck, S. L. & Strathern, J. N. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics147, 1017–1024 (1997). CASPubMedPubMed Central Google Scholar
Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature406, 1015–1019 (2000). ArticleCAS Google Scholar
Winter, D. B., Phung, A. H., Wood, R. D. & Gearhart, P. J. Differential expression of DNA polymerase ɛ in resting and activated B lymphocytes is consistent with an in vivo role in replication and not repair. Mol. Immunol. 37, 125–131 (2000). ArticleCAS Google Scholar
Zan, H. et al. The translesion DNA polymerase ζ plays a major role in Ig and bcl-6 somatic hypermutation. Immunity14, 643–653 (2001). ArticleCAS Google Scholar
Zeng, X. et al. DNA polymerase η is an A–T mutator in somatic hypermutation of immunoglobulin variable genes. Nature Immunol.2, 537–541 (2001). ArticleCAS Google Scholar
Poltoratsky, V. et al. Expression of error-prone polymerases in BL2 cells activated for Ig somatic hypermutation. Proc. Natl Acad. Sci. USA98, 7976–7981 (2001). ArticleCAS Google Scholar
Bemark, M., Khamlichi, A. A., Davies, S. L., & Neuberger, M. S. Disruption of mouse polymerase ζ (Rev3) leads to embryonic lethality and impairs blastocyst development in vitro. Curr. Biol. 10, 1213–1216 (2000). ArticleCAS Google Scholar
Wittschieben, J. et al. Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Curr. Biol.10, 1217–1220 (2000). ArticleCAS Google Scholar
Esposito, G. et al. Disruption of the _Rev3l_-encoded catalytic subunit of polymerase ζ in mice results in early embryonic lethality. Curr. Biol. 10, 1221–1224 (2000). ArticleCAS Google Scholar
Kajiwara, K. . et al. Sez4 gene encoding an elongation subunit of DNA polymerase ζ is required for normal embryogenesis. Genes Cells6, 99–106 (2001). ArticleCAS Google Scholar
Diaz, M., Verkoczy, L. K., Flajnik, M. F. & Klinman, N. R. Decreased frequency of somatic hypermutation and impaired affinity maturation but intact germinal center formation in mice expressing antisense RNA to DNA polymerase ζ. J. Immunol. 167, 327–335 (2001). ArticleCAS Google Scholar
Gibbs, P. E. M. et al. The function of the human homolog of S_accharomyces cerevisiae REV1_ is required for mutagenesis induced by UV light. Proc. Natl Acad. Sci. USA97, 4186–4191 (2000). ArticleCAS Google Scholar
Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature399, 700–704 (1999). ArticleCAS Google Scholar
Masutani, C. et al. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 18, 3491–3501 (1999). ArticleCAS Google Scholar
Zhang, Y. et al. Error-prone lesion bypass by human DNA polymerase η. Nucleic Acids Res. 28, 4717–4724 (2000). ArticleCAS Google Scholar
Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F. & Kunkel, T. A. Low fidelity DNA synthesis by human DNA polymerase-η. Nature404, 1011–1013 (2000). ArticleCAS Google Scholar
Trincao, J. et al. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion DNA synthesis. Mol. Cell8, 417–426 (2001). ArticleCAS Google Scholar
Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell107, 91–102 (2001). ArticleCAS Google Scholar
Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158–172 (2001). ArticleCAS Google Scholar
Yamada, A., Masutani, C., Iwai, S. & Hanaoka, F. Complementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase η. Nucleic Acids Res. 28, 2473–2480 (2000). ArticleCAS Google Scholar
Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T. & Kunkel, T. A. Somatic mutation hotspots correlate with DNA polymerase η error spectrum. Nature Immunol. 2, 530–536 (2001). ArticleCAS Google Scholar
Tissier, A., McDonald, J. P., Frank, E. G. & Woodgate, R. Pol ι, a remarkably error-prone human DNA polymerase. Genes Dev. 14, 1642–1650 (2000). CASPubMedPubMed Central Google Scholar
Vaisman, A. & Woodgate, R. Unique misinsertion specificity of pol ι may decrease the mutagenic potential of deaminated cytosines. EMBO J. (in the press).
Frank, E. G. et al. Altered nucleotide misinsertion fidelity associated with polι-dependent replication at the end of a DNA template. EMBO J. 20, 2914–2922 (2001). ArticleCAS Google Scholar
Ruiz, J. F. et al. DNA polymerase μ, a candidate hypermutase? Philos Trans R Soc Lond B Biol Sci356, 99–109 (2001). ArticleCAS Google Scholar
Dominguez, O. et al. DNA polymerase μ (Pol μ), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J. 19, 1731–1742 (2000). ArticleCAS Google Scholar
Aoufouchi, S. et al. Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res. 28, 3684–3693 (2000). ArticleCAS Google Scholar
Tissier, A. et al. Misinsertion and bypass of thymine– thymine dimers by human DNA polymerase ι. EMBO J. 19, 5259–5266 (2000). ArticleCAS Google Scholar
Bemark, M. et al. Somatic hypermutation in the absence of DNA-dependent protein kinase catalytic subunit (DNA-PKCS) or recombination-activating gene (RAG)1 activity. J. Exp. Med. 192, 1509–1514 (2000). ArticleCAS Google Scholar
Sale, J. E., Calandrini, D. M., Takata, M., Takeda, S. & Neuberger, M. S. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature412, 921–926 (2001). ArticleCAS Google Scholar
Reynaud, C.-A., Anquez, V., Grimal, H. & Weill, J.-C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell48, 379–388 (1987). ArticleCAS Google Scholar
Roberts, J. D. & Kunkel, T. A. in DNA Replication in Eukaryotic Cells: Concepts, Enzymes and Systems (ed. Pamphilis, M. D.) 217–247 (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1996). Google Scholar
Sharief, F. S., Vojta, P. J., Ropp, P. A. & Copeland, W. C. Cloning and chromosomal mapping of the human DNA polymerase θ (POLQ), the eighth human DNA polymerase. Genomics59, 90–96 (1999). ArticleCAS Google Scholar
Lin, W. et al. The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res. 27, 4468–4475 (1999). ArticleCAS Google Scholar
Sale, J. E. & Neuberger, M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity9, 859–869 (1998). ArticleCAS Google Scholar
Goodman, M. F. & Tippin, B. The expanding polymerase universe. Nature Rev. Mol. Cell Biol.1, 101–109 (2000). ArticleCAS Google Scholar
Honjo, T. & Alt, F. W. (eds) Immunoglobulin Genes 2nd edn (Academic Press, London, 1996). Google Scholar