Protein analysis on a proteomic scale (original) (raw)
Kenyon, G. L. et al. Defining the mandate of proteomics in the post-genomics era. Workshop Report: National Academy of Sciences, Washington DC, USA. Mol. Cell. Proteomics1, 763–780 (2002). CASPubMed Google Scholar
Cliften, P. F. et al. Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res.11, 1175–1186 (2001). ArticleCAS Google Scholar
Kumar, A. et al. An integrated approach for finding overlooked genes in yeast. Nature Biotechnol.20, 58–63 (2002). ArticleCAS Google Scholar
Hudson, J. R. Jr et al. The complete set of predicted genes from Saccharomyces cerevisiae in a readily usable form. Genome Res.7, 1169–1173 (1997). ArticleCAS Google Scholar
Reboul, J. et al. Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nature Genet.27, 332–336 (2001). ArticleCAS Google Scholar
Braun, P. et al. Proteome-scale purification of human proteins from bacteria. Proc. Natl Acad. Sci. USA99, 2654–2659 (2002). ArticleADSCAS Google Scholar
Nilsson, J., Stahl, S., Lundeberg, J., Uhlen, M. & Nygren, P. A. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Exp. Purif.11, 1–16 (1997). ArticleCAS Google Scholar
Zhu, H. et al. Global analysis of protein activities using proteome chips. Science293, 2101–2105 (2001). ArticleADSCAS Google Scholar
Martzen, M. R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science286, 1153–1155 (1999). ArticleCAS Google Scholar
Xing, F., Martzen, M. R. & Phizicky, E. M. A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA8, 370–381 (2002). ArticleCAS Google Scholar
Alexandrov, A. V., Martzen, M. R. & Phizicky, E. M. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA8, 1253–1266 (2002). ArticleCAS Google Scholar
Hazbun, T. R. & Fields, S. A genome-wide screen for site-specific DNA-binding proteins. Mol. Cell. Proteomics1, 538–543 (2002). ArticleCAS Google Scholar
Phizicky, E. M. et al. Biochemical genomics approach to map activities to genes. Methods Enzymol.350, 546–559 (2002). ArticleCAS Google Scholar
Grayhack, E. J. & Phizicky, E. M. Genomic analysis of biochemical function. Curr. Opin. Chem. Biol.5, 34–39 (2001). ArticleCAS Google Scholar
MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science289, 1760–1763 (2000). ADSCAS Google Scholar
Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nature Genet.26, 283–289 (2000). ArticleCAS Google Scholar
Haab, B. B., Dunham, M. J. & Brown, P. O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol.2, RESEARCH0004.1–0004.13 (2001). Article Google Scholar
Zhu, H. & Snyder, M. Protein arrays and microarrays. Curr. Opin. Chem. Biol.5, 40–45 (2001). ArticleCAS Google Scholar
Weng, S. et al. Generating addressable protein microarrays with PROfusion covalent mRNA- protein fusion technology. Proteomics2, 48–57 (2002). ArticleCAS Google Scholar
Templin, M. F. et al. Protein microarray technology. Trends Biotechnol.20, 160–166 (2002). ArticleADSCAS Google Scholar
Myszka, D. G. & Rich, R. L. Implementing surface plasmon resonance biosensors in drug discovery. Pharmacol. Sci. Technol. Today3, 310–317 (2000). ArticleCAS Google Scholar
Houseman, B. T., Huh, J. H., Kron, S. J. & Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nature Biotechnol.20, 270–274 (2002). ArticleCAS Google Scholar
LeProust, E. et al. Digital light-directed synthesis. A microarray platform that permits rapid reaction optimization on a combinatorial basis. J. Comb. Chem.2, 349–354 (2000). ArticleCAS Google Scholar
Wang, D., Liu, S., Trummer, B. J., Deng, C. & Wang, A. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnol.20, 275–281 (2002). ArticleCAS Google Scholar
Kuruvilla, F. G., Shamji, A. F., Sternson, S. M., Hergenrother, P. J. & Schreiber, S. L. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature416, 653–657 (2002). ArticleADSCAS Google Scholar
Sreekumar, A. et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res.61, 7585–7593 (2001). CASPubMed Google Scholar
Belov, L., de la Vega, O., dos Remedios, C. G., Mulligan, S. P. & Christopherson, R. I. Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res.61, 4483–4489 (2001). CASPubMed Google Scholar
Joos, T. O. et al. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis21, 2641–2650 (2000). ArticleCAS Google Scholar
Robinson, W. H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Med.8, 295–301 (2002). ArticleCAS Google Scholar
Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science298, 799–804 (2002). ArticleADSCAS Google Scholar
Faleiro, L., Kobayashi, R., Fearnhead, H. & Lazebnik, Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J.16, 2271–2281 (1997). ArticleCAS Google Scholar
Cravatt, B. F. & Sorensen, E. J. Chemical strategies for the global analysis of protein function. Curr. Opin. Chem. Biol.4, 663–668 (2000). ArticleCAS Google Scholar
Adam, G. C., Sorensen, E. J. & Cravatt, B. F. Chemical strategies for functional proteomics. Mol. Cell. Proteomics1, 781–790 (2002). ArticleCAS Google Scholar
Martins, L. M. et al. Activation of multiple interleukin-1β converting enzyme homologues in cytosol and nuclei of HL-60 cells during etoposide-induced apoptosis. J. Biol. Chem.272, 7421–7430 (1997). ArticleCAS Google Scholar
Greenbaum, D., Medzihradszky, K. F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol.7, 569–581 (2000). ArticleCAS Google Scholar
Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA96, 14694–14699 (1999). ArticleADSCAS Google Scholar
Kidd, D., Liu, Y. & Cravatt, B. F. Profiling serine hydrolase activities in complex proteomes. Biochemistry40, 4005–4015 (2001). ArticleCAS Google Scholar
Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics1, 60–68 (2002). ArticleCAS Google Scholar
Adam, G. C., Sorensen, E. J. & Cravatt, B. F. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nature Biotech.20, 805–809 (2002). ArticleCAS Google Scholar
Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B. F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl Acad. Sci. USA99, 10335–10340 (2002). ArticleADSCAS Google Scholar
Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature407, 395–401 (2000). ArticleADSCAS Google Scholar
Habelhah, H. et al. Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J. Biol. Chem.276, 18090–18095 (2001). ArticleCAS Google Scholar
Bishop, A. C., Buzko, O. & Shokat, K. M. Magic bullets for protein kinases. Trends Cell Biol.11, 167–172 (2001). ArticleCAS Google Scholar
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002). ArticleADSCAS Google Scholar
Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147 (2002). ArticleADSCAS Google Scholar
Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature340, 245–246 (1989). ArticleADSCAS Google Scholar
Fromont-Racine, M. et al. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast17, 95–110 (2000). ArticleCAS Google Scholar
Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature403, 623–627 (2000). ArticleADSCAS Google Scholar
Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA98, 4569–4574 (2001). ArticleADSCAS Google Scholar
Rain, J. C. et al. The protein–protein interaction map of Helicobacter pylori. Nature409, 211–215 (2001). ArticleADSCAS Google Scholar
Walhout, A. J. M. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science287, 116–122 (2000). ArticleADSCAS Google Scholar
Mrowka, R., Patzak, A. & Herzel, H. Is there a bias in proteome research? Genome Res.11, 1971–1973 (2001). ArticleCAS Google Scholar
Deane, C. M., Salwinski, L., Xenarios, I. & Eisenberg, D. Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell. Proteomics1, 349–356 (2002). ArticleCAS Google Scholar
Jansen, R., Greenbaum, D. & Gerstein, M. Relating whole-genome expression data with protein-protein interactions. Genome Res.12, 37–46 (2002). ArticleCAS Google Scholar
Kemmeren, P. et al. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol. Cell9, 1133–1143 (2002). ArticleCAS Google Scholar
von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature417, 399–403 (2002). ArticleADSCAS Google Scholar
Edwards, A. et al. Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet.18, 529–536 (2002). ArticleCAS Google Scholar
Fashena, S. J., Serebriiskii, I. & Golemis, E. A. The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. Gene250, 1–14 (2000). ArticleCAS Google Scholar
Wouters, F. S., Verveer, P. J. & Bastiaens, P. I. H. Imaging biochemistry inside cells. Trends Cell Biol.11, 203–211 (2001). ArticleCAS Google Scholar
Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem.67, 509–544 (1998). ArticleCAS Google Scholar
Siegel, R. M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science288, 2354–2357 (2000). ArticleADSCAS Google Scholar
Mahajan, N. et al. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nature Biotechnol.16, 547–552 (1998). ArticleCAS Google Scholar
Day, R. N. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrinol.12, 1410–1419 (1998). ArticleCAS Google Scholar
Sorkin, A., McClure, M., Huang, F. & Carter, R. Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol.10, 1395–1398 (2000). ArticleCAS Google Scholar
Llopis, J. et al. Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc. Natl Acad. Sci. USA97, 4363–4368 (2000). ArticleADSCAS Google Scholar
Kumar, A. et al. Subcellular localization of the yeast proteome. Genes Dev.16, 707–719 (2002). ArticleCAS Google Scholar
Ding, D. Q. et al. Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. Genes Cells5, 169–190 (2000). ArticleCAS Google Scholar
Sawin, K. E. & Nurse, P. Identification of fission yeast nuclear markers using random polypeptide fusion with green fluorescent protein. Proc. Natl Acad. Sci. USA94, 15146–15151 (1996). ArticleADS Google Scholar
Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl Acad. Sci. USA98, 15050–15055 (2001). ArticleADSCAS Google Scholar
Simpson, J. C., Wellenreuther, R., Poustka, A., Pepperkok, R. & Wiemann, S. Systematic subcellular localisation of novel proteins identified by large-scale cDNA sequencing. EMBO Rep.1, 287–292 (2000). ArticleCAS Google Scholar
Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature411, 107–110 (2001). ArticleADSCAS Google Scholar
Aslanidis, C. & de Jong, P. J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res.18, 6069–6074 (1990). ArticleCAS Google Scholar
Aslanidis, C., de Jong, P. J. & Schmitz, G. Minimal length requirement of the single-stranded tails for ligation-independent cloning (LIC) of PCR products. PCR Methods Appl.4, 172–177 (1994). ArticleCAS Google Scholar
Dieckman, L., Gu, M., Stols, L., Donnelly, M. I. & Collart, F. R. High throughput methods for gene cloning and expression. Protein Exp. Purif.25, 1–7 (2002). ArticleCAS Google Scholar
Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol.17, 1030–1032 (1999). ArticleCAS Google Scholar
Kapust, R. B. & Waugh, D. S. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci.8, 1668–1674 (1999). ArticleCAS Google Scholar