The yeast Pif1p helicase removes telomerase from telomeric DNA (original) (raw)

References

  1. Marcand, S., Brevet, V., Mann, C. & Gilson, E. Cell cycle restriction of telomere elongation. Curr. Biol. 10, 487–490 (2000)
    Article CAS Google Scholar
  2. Diede, S. J. & Gottschling, D. E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99, 723–733 (1999)
    Article CAS Google Scholar
  3. Taggart, A. K. P., Teng, S.-C. & Zakian, V. A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002)
    Article ADS CAS Google Scholar
  4. Fisher, T. S., Taggart, A. K. P. & Zakian, V. A. Cell cycle-dependent regulation of yeast telomerase by Ku. Nature Struct. Mol. Biol. 11, 1198–1205 (2004)
    Article CAS Google Scholar
  5. Schramke, V. et al. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nature Genet. 36, 46–54 (2004)
    Article CAS Google Scholar
  6. Schulz, V. P. & Zakian, V. A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–155 (1994)
    Article CAS Google Scholar
  7. Zhou, J.-Q., Monson, E. M., Teng, S.-C., Schulz, V. P. & Zakian, V. A. The Pif1p helicase, a catalytic inhibitor of telomerase lengthening of yeast telomeres. Science 289, 771–774 (2000)
    Article ADS CAS Google Scholar
  8. Mangahas, J. L., Alexander, M. K., Sandell, L. L. & Zakian, V. A. Repair of chromosome ends after telomere loss in Saccharomyces. Mol. Biol. Cell 12, 4078–4089 (2001)
    Article CAS Google Scholar
  9. Myung, K., Chen, C. & Kolodner, R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073–1076 (2001)
    Article ADS CAS Google Scholar
  10. Lahaye, A., Stahl, H., Thines-Sempoux, D. & Foury, F. PIF1: a DNA helicase in yeast mitochondria. EMBO J. 10, 997–1007 (1991)
    Article CAS Google Scholar
  11. Lue, N. F. Adding to the ends: what makes telomerase processive and how important is it? Bioessays 26, 955–962 (2004)
    Article CAS Google Scholar
  12. Peng, Y., Mian, I. S. & Lue, N. F. Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance. Mol. Cell 7, 1201–1211 (2001)
    Article CAS Google Scholar
  13. Collins, K. Ciliate telomerase biochemistry. Annu. Rev. Biochem. 68, 187–218 (1999)
    Article CAS Google Scholar
  14. Greider, C. W. Telomerase is processive. Mol. Cell. Biol. 11, 4572–4580 (1991)
    Article CAS Google Scholar
  15. Morin, G. B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529 (1989)
    Article CAS Google Scholar
  16. Cohn, M. & Blackburn, E. H. Telomerase in yeast. Science 269, 396–400 (1995)
    Article ADS CAS Google Scholar
  17. Haering, C. H., Nakamura, T. M., Baumann, P. & Cech, T. R. Analysis of telomerase catalytic subunit mutants in vivo and in vitro in Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 97, 6367–6372 (2000)
    Article ADS CAS Google Scholar
  18. Singh, S. M., Steinberg-Neifach, O., Mian, I. S. & Lue, N. F. Analysis of telomerase in Candida albicans: potential role in telomere end protection. Eukaryot. Cell 1, 967–977 (2002)
    Article CAS Google Scholar
  19. Prowse, K. R., Avilion, A. A. & Greider, C. W. Identification of a nonprocessive telomerase activity from mouse cells. Proc. Natl Acad. Sci. USA 90, 1493–1497 (1993)
    Article ADS CAS Google Scholar
  20. Mantell, L. L. & Greider, C. W. Telomerase activity in germline and embryonic cells of Xenopus. EMBO J. 13, 3211–3217 (1994)
    Article CAS Google Scholar
  21. Prescott, J. & Blackburn, E. Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev. 11, 2790–2800 (1997)
    Article CAS Google Scholar
  22. Forstemann, K. & Lingner, J. Molecular basis for telomere repeat divergence in budding yeast. Mol. Cell. Biol. 21, 7277–7286 (2001)
    Article CAS Google Scholar
  23. Jankowsky, E., Gross, C. H., Shuman, S. & Pyle, A. M. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001)
    Article ADS CAS Google Scholar
  24. Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003)
    Article ADS CAS Google Scholar
  25. Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003)
    Article ADS CAS Google Scholar
  26. Veaute, X. et al. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J. 24, 180–189 (2005)
    Article CAS Google Scholar
  27. Collins, K. & Greider, C. W. Tetrahymena telomerase catalyzes nucleolytic cleavage and nonprocessive elongation. Genes Dev. 7, 1364–1376 (1993)
    Article CAS Google Scholar
  28. Hammond, P. W., Lively, T. N. & Cech, T. R. The anchor site of telomerase from Euplotes aediculatus revealed by photo-cross-linking to single- and double-stranded DNA primers. Mol. Cell. Biol. 17, 296–308 (1997)
    Article CAS Google Scholar
  29. Shiratori, A. et al. Systematic identification, classification and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and northern analysis. Yeast 15, 219–253 (1999)
    Article CAS Google Scholar
  30. Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117, 323–335 (2004)
    Article CAS Google Scholar
  31. Bessler, J. B., Torres, J. Z. & Zakian, V. A. The Pif1p subfamily of helicases: region specific DNA helicases. Trends Cell Biol. 11, 60–65 (2001)
    Article CAS Google Scholar
  32. Zhou, J.-Q. et al. Schizosaccharomyces pombe pfh1 + encodes an essential 5′ to 3′ DNA helicase that is a member of the PIF1 sub-family of DNA helicases. Mol. Biol. Cell 13, 2180–2191 (2002)
    Article CAS Google Scholar
  33. Bennett, R. J., Sharp, J. A. & Wang, J. C. Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273, 9644–9650 (1998)
    Article CAS Google Scholar
  34. Burgers, P. M. Overexpression of multisubunit replication factors in yeast. Methods 18, 349–355 (1999)
    Article CAS Google Scholar
  35. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989)
    CAS PubMed PubMed Central Google Scholar
  36. Tsukamoto, Y., Taggart, A. K. P. & Zakian, V. A. The role of the Mre11–Rad50–Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr. Biol. 11, 1328–1335 (2001)
    Article CAS Google Scholar
  37. Monson, E. K., Schulz, V. P. & Zakian, V. A. in Genomic Instability and Immortality in Cancer (eds Mihich, E. & Hartwell, L.) 97–110 (Plenum, New York, 1997)
    Book Google Scholar

Download references